FLUSH-MOUNTED DIELECTRIC-LOADED AXIAL SLOT

 ON CIRCULAR CYLINDERJ. H. Richmond

The Ohio State University ElectroScience Laboratory

Department of Electrical Engineering

Columbus, Ohio 43212

TECHNICAL REPORT 2902-17
Grant Number NGL 36-008-138 June 1974

National Aeronautics and Space Administration Langley Research Center

Hampton, Va. 23365

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

FLUSH-MOUNTED DIELECTRIC-LOADED AXIAL SLOT ON CIRCULAR CYLINDER

J. H. Richmond

TECHNICAL REPORT 2902-17

Grant Number NGL 36-008-138
June 1974

National Aeronautics and Space Administration Langley Research Center Hampton, Va. 23365

ABSTRACT

This report presents the theory, computer program and numerical results for an axial slot antenna on a circular cylinder.
Page
I. INTRODUCTION 1
II. THEORY 1
III. NUMERICAL RESULTS 7
IV. SUMMARY AND CONCLUSIONS 13
REFERENCES 14
APPENDIX I - THE MAIN COMPUTER PROGRAM 15
APPENDIX II - SUBROUTINE BESSI 20
APPENDIX III - SUBROUTINE SQROT 29
ACKNOWLEDGMENT 30

I. INTRODUCTION

We consider an axial slot antenna on a perfectly conducting circular cylinder. The cylinder is partially coated with a dielectric layer, and the antenna radiates through this flush-mounted window. The motivation for this study is to determine the effects of a high-temperature dielectric layer on the performance of antennas mounted on a space shuttle.

For an axial slot antenna on a circular cylinder completely coated with a dielectric layer, the admittance and patterns have been investigated by Knop[1], Fante[2], and Croswell, Westrick and Knop[3]. Our analysis has some similarity to that of Billingsley and Sinclair[4] for scattering by circular-sector cylinders.

The following sections define the problem and present the theory, computer programs and some numerical results.
II. THEORY

Consider an axial slot antenna on a perfectly conducting circular cylinder as illustrated in Fig. 1. The inner aperture has radius "a" and

Fig. 1. An axial-slot antenna radiates through a flush-mounted dielectric window in a conducting circular cylinder.
half-angle ϕ_{a}. The outer aperture has radius b and half-angle ϕ_{C}. The exterior medium is free space. The inner slot radiates through a flushmounted homogeneous dielectric window with permittivity ε_{1}, permeability $\mu 1$, inner radius a, outer radius b and half-angle ϕ_{b}. The metallic flange prevents the dielectric window from falling out. This cylindrical structure has infinite length, and its axis coincides with the z axis. We consider a time-harmonic excitation with the time dependence ejwt understood, and the fields have no z dependence. This report considers the TE polarization in which the non-zero field components are E_{ρ}, E_{ϕ} and H_{z}. Given an even field distribution E_{ϕ} over the inner aperture, the objective is to determine the aperture admittance, gain and far-field pattern of this antenna. Our solution employs cylindrical-mode expansions and Galerkin's method.

The field in region I (the dielectric window) is

$$
\begin{equation*}
E_{\rho}^{I}=\frac{j \eta_{1}}{k_{1} \rho} \sum_{k} v\left[c_{k} J_{v}(\rho)+d_{k} N_{v}(\rho)\right] \sin v \phi \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
E_{\phi}^{I}=j \eta_{1} \sum_{k}\left[c_{k} j_{v}^{\prime}(\rho)+d_{k} N_{v}^{\prime}(\rho)\right] \cos v \phi \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
H_{z}^{I}=\sum_{k}\left[c_{k} J_{v}(\rho)+d_{k} N_{v}(\rho)\right] \cos v \phi \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
k_{1}=\omega \sqrt{\mu_{1} \varepsilon_{1}} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& n_{1}=\sqrt{\mu_{1} / \varepsilon_{1}} \tag{5}\\
& \nu=k \pi / \phi_{b}
\end{align*}
$$

where the integer k runs from zero to infinity and (ρ, ϕ, z) are the cylindrical coordinates. (In this report the symbols $J_{\nu}(\rho)$ and $N_{\nu}(\rho)$ denote the Bessel and Neumann functions with order v and argument kjp.) This field satisfies the source-free version of Maxwell's equations in region I. From Eqs. (1) and (6), tangential E vanishes at the perfectly conducting surfaces at $\phi= \pm \phi_{\mathrm{b}}$. The expansion constants c_{k} and d_{k} are to be determined from the boundary conditions.

The voltage across the inner aperture is
(7) $\quad V=2 a \int_{0}^{\phi} a \operatorname{d\phi }$
where E denotes $E_{\phi}(a, \phi)$. (We assume the aperture field E is a specified even function of ϕ.) The external admittance of the inner aperture is

$$
\begin{equation*}
Y=\frac{2 a}{V^{*}} \int_{0}^{\phi} E^{*} H_{Z}^{I}(a, \phi) d \phi \tag{8}
\end{equation*}
$$

The boundary condition at $\rho=a$ is

$$
E_{\phi}^{I}= \begin{cases}E & \text { for } 0<\phi<\phi_{a} \tag{9}\\ 0 & \text { for } \phi_{a}<\phi<\phi_{b}\end{cases}
$$

From Eqs. (2) and (9) with Fourier analysis,

$$
\begin{equation*}
j \eta_{1} \phi_{b}\left[c_{k} J_{v}^{\prime}(a)+d_{k} N_{v}^{\prime}(a)\right]=e_{k} G_{k} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
G_{k}=\int_{0}^{\phi_{a}} E \cos v \phi d \phi \tag{11}
\end{equation*}
$$

where $e_{0}=1$ and $e_{k}=2$ for $k=1,2,3 \ldots$
From Eqs. (3) and (8), the external admittance (per unit length of cylinder) of the inner aperture is

$$
\begin{equation*}
Y=\frac{2 a}{V^{\star}} \cdot \sum_{k}\left[c_{k} J_{v}(a)+d_{k} N_{v}(a)\right] G_{k}^{\star} \tag{12}
\end{equation*}
$$

The field in region II (the exterior free-space region) is

$$
\begin{align*}
& E_{\rho}^{I I}=\frac{j n_{0}}{k_{0}^{\rho}} \sum_{i} i a_{i} H_{j}(\rho) \sin i \phi \tag{13}\\
& E_{\phi}^{I I}=j n_{0} \sum_{i} a_{i} H_{i}^{\prime}(\rho) \cos i \phi
\end{align*}
$$

$$
\begin{equation*}
H_{z}^{I I}=\sum_{i} a_{i} H_{i}(\rho) \cos i \phi \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
k_{0}=\omega \sqrt{\mu_{0} \varepsilon_{0}} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\eta_{0}=\sqrt{\mu_{0} / \varepsilon_{0}} \tag{17}
\end{equation*}
$$

where the integer \mathfrak{i} runs from zero to infinity. (In this report the symbol $H_{i}(\rho)$ denotes the Hankel function with order i and argument $k_{0} \rho$ and the superscript (2) is understood. The argument $k \rho \rho$ will not be encountered with the Hankel function.) This field satisfies the radiation conditions and the source-free version of Maxwell's equations.

To complete the solution, it remains only to enforce the boundary conditions at $\rho=b$. The rigorous solution involves an infinite system of simultaneous linear equations. We desire an accurate approximation involving a finite system of simultaneous linear equations. To develop a solution of this type, we expand the field in the outer aperture (at $\rho=b$) as follows:

$$
\begin{equation*}
E_{\phi}=\sum_{n} b_{n} \cos \left(n_{\pi \phi / \phi_{C}}\right) \quad \text { for } 0<\phi<\phi_{c} \tag{18}
\end{equation*}
$$

where n runs from zero to N. If the constants b_{n} were known, the remaining constants ($\mathrm{a}_{i}, \mathrm{c}_{k}$ and d_{k}) could be determined. In this sense the b_{n} are independent unknowns, and the others are dependent. When the simultaneous linear equations are written as a matrix equation, the square matrix will be symmetric if the b_{n} are chosen as the independent quantities.

From Eq. (2) and the boundary condition on E_{ϕ}^{I} at $\rho=b$,

$$
j \eta_{1} \sum_{k}\left[c_{k} J_{v}^{\prime}(b)+d_{k} N_{v}^{\prime}(b)\right] \cos v \phi= \begin{cases}E_{\phi} & \text { for } 0<\phi<\phi_{c} \tag{19}\\ 0 & \text { for } \phi_{C}<\phi<\phi_{b}\end{cases}
$$

where E_{ϕ} is defined by Eq. (18). Multiplying both sides of Eq. (19) by $\cos v \phi$ and integrating over the range $0<\phi<\phi_{b}$ yields

$$
\begin{equation*}
j \eta_{1} \phi_{b}\left[c_{k} J_{v}^{\prime}(b)+d_{k} N_{v}^{\prime}(b)\right]=e_{k} \sum_{n} b_{n} F_{k n} \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
F_{k n}=\int_{0}^{\phi_{C}} \cos \left(k \pi \phi / \phi_{b}\right) \cos \left(n \pi \phi / \phi_{C}\right) d \phi \tag{21}
\end{equation*}
$$

From Eqs. (10) and (20),

$$
\begin{equation*}
c_{k}=P_{k}\left[G_{k} N_{v}^{\prime}(b)-N_{v}^{\prime}(a) \sum_{n} b_{n} F_{k n}\right] \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
d_{k}=P_{k}\left[-G_{k} J_{v}^{\prime}(b)+j_{v}^{\prime}(a) \quad \sum_{n} b_{n} F_{k n}\right] \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
P_{k}=\frac{e_{k}}{j \eta_{1} \phi_{b}\left[J_{v}^{\prime}(a) N_{v}^{\prime}(b)-J_{v}^{\prime}(b) N_{v}^{\prime}(a)\right]} \tag{24}
\end{equation*}
$$

From Eq. (14) and the boundary condition on $E_{\phi}^{I I}$ at $\rho=b$,

$$
j n_{0} \sum_{i} a_{i} H_{i}^{\prime}(b) \cos i \phi=\left\{\begin{array}{lll}
E_{\phi} & \text { for } & 0<\phi<\phi_{C} \tag{25}\\
0 & \text { for } \phi_{C}<\phi<\pi
\end{array}\right.
$$

where E_{ϕ} is defined by Eq. (18). Multiplying both sides of $E q$. (25) by $\cos \mathrm{i} \phi$ and integrating over the range $0<\phi<\pi$ yields:

$$
\begin{align*}
& a_{i}=\frac{e_{i}}{j \pi \eta_{0} H_{i}^{\prime}(b)} \sum_{n} b_{n} G_{i n} \tag{26}\\
& G_{i n}=\int_{0}^{\phi_{C}} \cos (i \phi) \cos \left(n \pi \phi / \phi_{c}\right) d \phi . \tag{27}
\end{align*}
$$

Equations (22)-(26) show explicitly that a knowledge of the constants b_{n} is sufficient to determine all the other constants.

At this point we have used the boundary conditions on E_{ϕ} to relate $\mathrm{a}_{\mathrm{i}}, \mathrm{c}_{\mathrm{k}}$ and d_{k} to b_{n}. The next step is to use the boundary condition on H_{z} to generate a system of simultaneous linear equations for the constants b_{n}. From Eqs. (3) and (15) and continuity of tangential H across the outer aperture (at $\rho=b$):

$$
\begin{equation*}
\sum_{i} a_{i} H_{i}(b) \cos i \phi=\sum_{k}\left[c_{k} J_{v}(b)+d_{k} N_{v}(b)\right] \cos v \phi \tag{28}
\end{equation*}
$$

where ϕ ranges from zero to ϕ_{C}. In Eq. (28), multiplying both sides by $\cos \left(m \pi \phi / \phi_{C}\right)$ and integrating from $\phi=0$ to $\phi=\phi_{C}$ yields

$$
\begin{equation*}
\sum_{i} a_{i} H_{i}(b) G_{i m}=\sum_{k}\left[c_{k} J_{v}(b)+d_{k} N_{v}(b)\right] F_{k m} . \tag{29}
\end{equation*}
$$

In matching H_{z} across the aperture, we selected the same weighting function $\cos \left(m \pi \phi / \phi_{C}\right)$ also used as a basis function in Eq. (18). This is the distinctive feature of Galerkin's method. If Eqs. (22), (23) and (26) are used to eliminate a_{i}, c_{k} and d_{k}, Eq. (29) yields:

$$
\begin{equation*}
\sum_{n} Z_{m n} b_{n}=V_{m} \text { with } m=0,1,2, \cdots N \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
V_{m}=\frac{2 j \eta_{1} \phi_{b}}{k_{1} b \phi_{c}} \cdot \sum_{k} P_{k} G_{k} F_{k m} \tag{31}
\end{equation*}
$$

$$
\begin{align*}
& Z_{m n}=\frac{\phi_{b}}{\phi_{c}}\left[\frac{n_{1}}{\eta_{0}} \sum_{i} \frac{e_{i} H_{i}(b) G_{i m} G_{i n}}{H_{i}^{\prime}(b)}+\frac{\pi}{\phi_{b}} \sum_{k} e_{k} R_{k} F_{k m} F_{k n}\right] \tag{32}\\
& R_{k}=\frac{J_{v}(b) N_{v}^{\prime}(a)-J_{v}^{\prime}(a) N_{v}(b)}{J_{v}^{\prime}(a) N_{v}^{\prime}(b)-J_{v}^{\prime}(b) N_{v}^{\prime}(a)} \tag{33}
\end{align*}
$$

Equation (30) is recognized as a system of simultaneous linear equations. In the summation, n runs from zero to N. Equation (30) can also be written as a matrix equation. The symmetry of the square matrix $Z_{m n}$ is obvious in Eq. (32).

The matrix equation is solved with a digital computer to obtain numerical values for b_{n}. Then Eqs. (22), (23) and (26) are employed to determine c_{k}, d_{k} and a_{j}. The aperture admittance is obtained from Eq. (12). The far-field pattern is obtained from Eq. (15) as follows:

$$
\begin{equation*}
H_{z}=e^{-j k \rho} \sqrt{\frac{2 j}{\pi k \rho}} \sum_{i} a_{i} j^{i} \cos i \phi . \tag{34}
\end{equation*}
$$

The power gain is calculated as follows:

$$
\begin{equation*}
G_{p}(\phi)=\frac{2 \pi \rho \eta_{0}\left|H_{z}(\rho, \phi)\right|^{2}}{V V^{\star} G} \tag{35}
\end{equation*}
$$

where the aperture voltage V is given by Eq. (7) and the aperture conductance G is the real part of Y in Eq. (12).

III. NUMERICAL RESULTS

Figures 2-6 illustrate the far-field patterns of an axial slot antenna radiating through a lossless window with dielectric constant of $1,1.2,2,3$ and 4 . Figures 2 and 3 compare the calculated patterns with experimental measurements performed at NASA Langley. Measurements are not available for the other cases. In this sequence of figures all parameters of the slot, window and cylinder are fixed except the dielectric constant. The electric field distribution is uniform across the inner aperture.

All the patterns are reasonably smooth except in Fig. 5 where the pattern breaks up into many lobes with deep nulls. With a dielectric constant of 3 , this anomalous type of pattern is observed when the aperture half-angle is $\phi_{b}=13.8,14.8,15.8,16.8^{\circ}$, etc. When ϕ_{b} differs from one of these critical angles by more than 0.1 degrees, the pattern becomes smooth again. At each critical angle, the aperture width is an integral number of wavelengths for the lowest-order surface wave. This surfacewave resonance phenomenon is less pronounced with a dielectric constant of 1.2 but is observed when $\phi_{b}=14.6^{\circ}$. The effect may be reduced with a lossy dielectric window or by reducing the reflection coefficient at the edges of the aperture.

In these figures, the calculations are based on a two-dimensional model with an infinitely long axial slot. A case of greater interest is a half-wave axial slot in a long cylinder. The effects of surface-wave resonance will be reduced with a slot of finite length.

In generating the data for Fig. 5, the execution time was 50 seconds on a Datacraft 6024/3 computer. The solution involved a system of 20 simultaneous linear equations ($\mathrm{N}=19$ in Eqs. (18) and (30)). The infinite series with index i (in Eqs. (32) and (34)) were truncated after 148 terms, and the series with index k (in Eqs. (12), (31) and (32)) were truncated after 20 terms. The calculated aperture admittance was 0.372 + j 0.122 mhos/wavelength. Identical results were obtained with $N=18$ and 19, but $N=15$ proved inadequate.

Fig. 2. Far-field pattern with $\varepsilon_{r}=1$.

Fig. 3. Far-field pattern with $\varepsilon_{r}=1.2$.

Fig. 4. Far-field pattern with $\varepsilon_{r}=2$.

Fig. 5. Far-field pattern with $\varepsilon_{r}=3$.

Fig. 6. Far-field pattern with $\varepsilon_{r}=4$.

IV. SUMMARY AND CONCLUSIONS

This report develops the theoretical formulation for a TE axial slot antenna radiating through a dielectric window in a circular cylinder. Numerical results are presented for the far-field patterns, and it is noted that the calculations show excellent agreement with experimental measurements. The computer program is presented in the Appendices.

The solution is based on Galerkin's method. Simultaneous linear equations are generated in which the unknown quantities are the coefficients in a Fourier-series expansion for the electric field in the outer aperture. The formulation is rapidly convergent, and the computer program is quite efficient.

REFERENCES

1. Knop, C.M., "External Admittance of an Axial Slot on a Dielectric Coated Metal Cylinder," Radio Science, Vol. 3, No. 8, August 1968, pp. 803-817.
2. Fante, R.L., "Calculation of the Admittance, Isolation, and Radiation Pattern of Slots on an Infinite Cylinder Covered by an Inhomogeneous Lossy Plasma," Radio Science, Vol. 6, No. 3, March 1971, pp. 421-428.
3. Croswell, W.F., Westrick, G.C. and Knop, C.M., "Computations of the Aperture Admittance of an Axial Slot on a Dielectric Coated Cylinder," IEEE Trans., Vol. AP-20, January 1972, pp. 89-92.
4. Billingsley, J.B. and Sinclair, G., "Numerical Solutions to Electromagnetic Scattering from Strips, Finite Wedges, and Notched Circular Cylinders," Canadian Journal of Physics, Vol. 44, 1966, pp, 3217-3225.
5. Goldstein, M. and Thaler, R.M., "Recurrence Techniques for the Calculation of Bessel Functions, "MTAC (Mathematics of Computation) Vo1. 13, Apri1, 1959, pp. 102-108.
6. Goldstein, M. and Thaler, R.M., "Bessel Functions for Large Arguments," MTAC (Mathematics of Computation) Vol. 12, January 1958, pp. 18-26.

APPENDIX I
THE MAIN COMPUTER PROGRAM

The MAIN computer program is listed in Fig. 7. In this program E_{ϕ} is uniform across the inner aperture and the dielectric window is lossless. Following the format statements, the dimensions are indicated for the subscripted quantities as follows:

IDC. dimension of B and V
IDH dimension of $A, B H R, B B, Y Y, B P, Y P, S N C$ and $S G A$
IDJ dimension of $C, D, S G C$, RBES, BEN, AJJ, etc
IDZ dimension of Z.
The input data are programed at statement 20 with the following definitions:
AL inner radius a / λ
BL outer radius b / λ
ER dielectric constant $\varepsilon_{\rceil} / \varepsilon_{0}$
DPH angular increment for far-field pattern calculations
PHA ϕ_{a} in degrees
PHB ϕ_{b} in degrees
PHC ϕ_{C} in degrees
where λ denotes the wavelength in free space.
At statement 30 , subroutine BESSI is called for the Bessel and Neumann functions and their derivatives. This subroutine also determines the number of terms (denoted by KK) to be employed in the summations on k in Eqs. (12), (31) and (32). The last call to BESSI determines the number of terms (denoted by II) to be employed in the summations on \boldsymbol{i} in Eqs. (32) and (34). If KK is equal to IDJ, the dimension IDJ should be increased. If II is equal to IDH, the dimension IDH should be increased. II should exceed IMIN, and KK should exceed KMIN. NN denotes the number of simultaneous linear equations and the number of terms to be employed in the summations on n in Eqs. (22), (23) and (26). NN should exceed NMIN.

For a uniform aperture distribution with $V=1$ volt, Eqs. (7) and (11) yield

$$
\begin{equation*}
G_{k}=\frac{\sin \left(\nu \phi_{a}\right)}{2 a v \phi_{a}} \tag{36}
\end{equation*}
$$

In the computer program, $S G A(K)$ denotes $2 a G_{k}$. Subroutine GLJ calculates $F_{k n} / \phi_{\mathrm{C}}$ where F_{kn} is defined by Eq. (21). Subroutine GNJ calculates
$G_{i n} / \phi_{c}$ where $G_{i n}$ is defined by Eq. (27). Some of the symbols used in the program are defined as follows:

A	a_{i}
B	$\mathrm{b}_{\mathrm{n}} / \mathrm{k}_{0}$
C	c_{k}
D	d_{k}
V	v_{m} / k_{0}
AK	$\mathrm{k}_{0}{ }^{\text {a }}$
BK	$k_{0} b$
AK1	$\mathrm{k}_{1}{ }^{\text {a }}$
BK1	$k_{1}{ }^{\text {b }}$
BEN	denominator in Eq. (33)
BHR	$H_{i}(\mathrm{~b}) / \mathrm{H}_{j}^{\prime}(\mathrm{b})$
ETA	${ }^{n}$
ETA1	${ }^{n} 1$
GNU	v
RBES	$-R_{k}$
SGC	$\left(\sin \nu \phi_{C}\right) /\left(\nu \phi_{c}\right)$
SNC	$\left(\sin i \phi_{C}\right) / /\left(i \phi_{C}\right)$
SJN	first summation in Eq. (32)
SJL	second sumation in Eq. (32)
Y11	aperture admittance Y
Z(L)	$Z_{m m}$

In statement 130, subroutine SQROT is called to solve the system of simultaneous linear equations. Then the expansion coefficients a_{i}, c_{k} and d_{k} are calculated from Eqs. (22), (23) and (26). The aperture admittance is calculated at statement 360 with Eq. (12). Finally, the gain is calculated with Eqs. (34) and (35).
C TE AXIAL SLOT IN PERFECTLY CONDUCTING CIRCULAR CYLINDER。 0001
SLOT RADIATES THROUGH DIFLFCTRIC WINDOW. 0002
PROGRAM BY JACK H RICHM(INI), UHIU STATE UNIVEKSITY. 0003
COMPLEX V(30), R(30), Z(405), C(150), D(150), A(400), MIIR(400) 0004
COMPLEX CO,HZ, SUMN,SU!,SJN,Y11 0005
DIMENSION BB(400), YY\{400), BP(400), YP(400), SNC1400), SGA(400) 0006
DIMENSIUN SGC(150), RHES(150), BEN(150) 0007
DIMENSION AJJ(150), AYY(150), AJP(150), AYP(150) 0008
OIMENSION BJI(150), BY1(150),RJP1(150), BYP1(150) 0009
EOUIVALENCE $(B, V),(B B, S N C),(Y Y, S G A),(B J l, S G C),(B Y 1, R B E S)$ 0010
DATA ETA,PI.TP/376.727.3.14159,6.28318/ 0011
2 FORMAT(IX, BH⒖6) 0012
4 FORMAT(1X,12110) 0013
5 FORMAT(1HO) 0014
$I D C=30$ 0015
$10 \mathrm{H}=400$ 0016
$10 J=150$ 0017
$102=465$ 0018
$20 \mathrm{AL}=18.7325$ 0019
$B L=19.05$ 0020
$E R=3$ 。 0021
$\mathrm{DPH}=2$. 0022
$\mathrm{PHA}=0.54$ 0023
$P H B=14.8$ 0024
$P H C=P H B$ 0025
IF (PHA.GT. PHB) PHA $=P H B$ 0026
IF(PHC.GT, PHB)PHC=PHB 0027
$\mathrm{N}=.5+(\operatorname{SORT}(1 .+8 . * 1 \mathrm{DZ})-1) /$.2 0028
IF(N.L.T.IDC)IDC=N 0029
$N N=10 C$ 0030
$S O R=S O R T$ (ER) 0031
ETA1=ETA/SQR 0032
$T L=B L-A L$ 0033
WRITE(6,2)AL, BL, TL, ER, PHA , PHB, PHC 0034
WRITE 6,5) 0035
$A K=T P * A L$ 0036
$B K=T P$ 후 $B L$ 0037
$A K 1=A K * S O R$ 0038
BKI $=B K \neq S O R$ 0039
PHAR $=0.0174533$ * PHA 0040
PHBR $=.0174533 * P H B$ 0041
PHCR =. $0174533 * \mathrm{PHC}$ 0042
GNIJ=PI/PHBR 0043
30 CALL BESSI(AKI, GNU, AJJ, AYY, AJP,AYP,IDJ,IDH,KK \&BB, YY) 0044
CALL BESSI(BKI,GNU,BJI,BYI, BJPI, BYPI, IDJ,IDH,LL,BB,YY) 0045
CALL BESSI(BK, I., BB,YY,BP,YP,IOH,IDH,II,BB,YY) 0046
IF(LL.LT.KK)KK=LL 0047
KMIN=BK*PHB/180. 0048
IMIN=BK0049
NMIN=BK*PHC/180. 0050
NMAX $=95+K K \div P H C / P H B$ 0051
IF(NN.GT.IDCINN=IDC 0052
IF(NN.GT.NIAAX)NN=NMAX 0053
IFINN.LT. I $) N N=1$ 0054
WRITE(6,4)IMIN,II, KMIN,KK,NMIN, NN 0055
WRITE(6,5) 0056
SUMN $=(.0,00)$ 0057
BHR(1)=CMPLX(BB(1),-YY(1))/CMPLX(BP(1),-YP(1)) 0058
$0060 \mathrm{I}=2,11$ 0059
$B H R(I)=C M P L X(B B(I),-Y Y(I)) / C M P L X(B P(I),-Y P(I))$ 0060
$N=I-1$ 0061
$S C=S I N(N * P H C R) /(N \not N P H C R)$ 0062

Fig. 7. The MAIN computer program.
SNC(I)=SC 0063
60 SUMN $=$ SUMN + BHR(I)*SC*SC 0064
RUM1 = AJP (1) $=$ BY1 (1)-HJ1(1)*AYP(1) 0065
REN1 =AJP(1)*BYP1(1)-BJP1\{1\}*AYP(1) 0066
SUML $=-0$ 0067
SUMP $=0$ 0068
DO $70 \mathrm{~K}=2$, KK 0069
 0070
RBES $(K)=(A J P(K) * R Y 1(K)-B J l(K) * A Y P(K)) / B E N(K)$ 0071
GNU $=(K-1$. $) * P I / P H B R$ 0072
$S C=S I N(G N U * P H C R) /(G N U * P H C R)$ 0073
SGC(K)=SC 0074
SGA(K) $=$ SIN(GNU*PHAR)/(GNU*PHAR) 0075
SUMP $=$ SUMP + SGA(K)*SC/BEN(K) 0076
70 SUML $=$ SUML + RBES(K)*SC*SC 0077
Z(1)=ETA1*PHBR*(.5*BHR(1)+SUMN)/(ETA*PI)-.5*RUM1/RENI-SUML 0078
Z(1)=PHCR*Z(1) 0079
$V(1)=C M P L X((1 . / R E N 1+2 . * S U M P) /(A K * B K 1), 0$. 0080
JF(NN.EQ.1)GO TO 130 0081
DO $120 \mathrm{~N}=1, \mathrm{NN}$ 0082
$M A=2$ 0083
IFiN.GT. 2)MA=N 0084
DO $120 \mathrm{M} \simeq \mathrm{MA}$, NN 0085
$\mathrm{SJN}=(.0,0$) 0086
OO $100 \mathrm{I}=2,1 \mathrm{I}$ 0087
CALL GNJ(I,M, PHCR,SNC,GIM) 0088
GIN=5NC(I) 0089
IF(N.GT. I)CALL GNJ (I,N,PHCR,SNC,GIN) 0090
$100 \mathrm{SJN}=\mathrm{SJN}+$ BHR(I)*GIM*GIN 0091
$5 \mathrm{JL}=.0$ 0092
$C J R=.0$ 0093
OO $110 \mathrm{~K}=2, \mathrm{KK}$ 0094
CALL GLJ(K,M,PHBR,PHCR,SGC;FKM) 0095
FKN=SGC(K) 0096
IF(N.GT. I)CALL GLJ(K,N,PHBR,PHCR,SGC,FKN) 0097
IF (N.EO. 1)CJR = CJR + FKM 0098
$110 S J L=S J L+R B E S(K)$ ㅎ $F K M \neq F K N$ 0099
$L=(N-1)$ क $N N-(N * N-N) / 2+M$ 0100
$Z(L)=(E T A I * P H B R * S J N /(E T A=P I)-S J L)$ \# CHCR 0101
120 IF (N.EQ.1)V $(M)=C M P L X(2 . * C J R /(A K * B K 1), 0$. 0102
130 CALL SOROT(Z,V,O,1,NN) 0103
$A(1)=-(.0,1) * P H C R * B.(1) /(E T A * P I * C M P L X(B P(1),-Y P(1)))$ 0104
DO $3001=2$, 11 0105
SC=SNC(1) 0106
SUL $=\mathrm{B}(1)$ *SC 0107
1F(NN.EO. 1)GO TO 300 0108
DO $290 \mathrm{~N}=2$, NN 0109
CALL GNJ(I,N,PHCR,SNC,GIN) 0110
290 SUL $=$ SUL $+B(N) * G I N$ 0111
300 A(1) $=-2$. *PHCR辛 (.0, 1.) * $\operatorname{SUL} /(E T A * P I * C M P L X(B P(1),-Y P(1)))$ 0112
C(1) $=(.0,1) *.(2 . * A L * P H C R * B(1) * A Y P(1)-8 Y P 1(1)) /$ 0113
2(2.*AL*ETA1*PHBR*REN1) 0114
$D(1)=(.0,1) *.(B J P 1(1)-2 * * A L * P H C R * B(1) * A J P(1)) /$ 0115
2(2.*AL*ETA1*PHBR*REN1) 0116
DO $340 \mathrm{~K}=2 . \mathrm{KK}$ 0117
SA $=$ SGA (K) 0118
REN=AL*ETA1*PHBR*BEN(K) 0119
SUL $=8(1)$ \# $S G C(K)$ 0120
IF(NN.EQ.I)GO TO 330 0121
DO 320 N二2, NN 0122
CALL GLJ(K,N,PHBR,PHCR,SGC,FKN) 0123
320 SUL = SUL+B(N) \#FKN 0124

Fig. 7.
$330 C(K)=-S A * B Y P 1(K)+2 * * A L * P H C R * A Y P(K) * S U L$ 0125
$C(K)=(.0,1) * C.(K) / R E N$ 0126
$0(K)=S A * B J P 1(K)-2 * * A L * P H C R * A J P(K) * S U L$ 0127
340 O(K) $=\{.0,1,1 \div 0(K) / R E N$ 0128
$Y 11=(1) * A J J(1)+1)(1) * A Y Y(1)$ 0129
$00360 \mathrm{~K}=2, \mathrm{KK}$ 0130
360 Yll $=Y 11+(C(K) \neq A J J(K)+D(K) * A Y Y(K)) \neq S G A(K)$ 0131
WRITE(6,2)Y11 0132
WRITE(6,5) 0133
$G G=R F A L(Y 11)$ 0134
$\mathrm{NPH}=180.10 \mathrm{PH}+1.5$ 0135
DO $400 \mathrm{~L}=1, \mathrm{NPH}$ 0136
$\mathrm{PH}=(\mathrm{L}-1) \neq \mathrm{D} \mathrm{PH}$ 0137
$\mathrm{PHR}=.0174533 * \mathrm{PH}$ 0138
$H Z=1.0,01$ 0134
$C O=(1,0.0)$ 0140
DO $390 \quad I=1,11$ 0141
$\mathrm{N}=\mathrm{I}-1$ 0142
$H Z=H Z+C A * A(1) * C O S(N * P H R)$ 0143
$390 \mathrm{CQ}=\mathrm{CO} \mathrm{Cl}^{2}(0,1$. 0144
$H A B=C A B S(H Z \mid / P I$ 0145
GAIN=TP*ETA*HAB*HAB/GG 0146
DB=10.*ALOG10(GAIN) 0147
400 WRITE(6,2$) \mathrm{PH}, \mathrm{GAIN}, \mathrm{OB}$ 0148
CALL EXIT 0149
END 0150

Fig. 7.

The subroutines are listed in Figs. 8-11. BESSI is a drastically modified and streamlined version of a program developed by Nelson Ma of the Department of Engineering Mechanics at The Ohio State University. This program calculates Bessel and Neumann functions and their derivatives. The argument must be positive and real. The order is positive and real, and it may be integer or noninteger. For the gamma function, BESSI calls subroutine GAMMA from the IBM 360 scientific subroutine package. The input data are defined as follows:
X argument, greater than zero
ORD order, greater than zero
IDL dimension of BJJ, BYY, BJP and BYP
IDM dimension of $B J$ and $B Y$
BJ and BY are work arrays for internal use. If ORD is an integer, BJ and BY may have the same names in the calling program as BJJ and BYY to reduce storage requirements. This is illustrated in the third call to BESSI in Fig. 7. The output data are defined as follows:
$\begin{array}{ll}\operatorname{BJJ}(I) & J_{v}(x) \text { with } I=1,2,3, \cdots N \text { and } v=(I-1) * O R D \\ \operatorname{BYY}(I) & N_{v}(x) \\ \operatorname{BJP}(I) & J_{v}^{\prime}(x) \\ \operatorname{BYP}(I) & N_{v}^{1}(x) \\ N & \text { maximum value of } I\end{array}$
N will not exceed IDL. If IDL and IDM are sufficiently large, N will be determined by the condition that $\operatorname{BJJ}(\mathrm{N})$ is less than 10^{-6} or $\operatorname{BYY}(\mathrm{N})$ is greater than 10^{6}. Comparison with other subroutines indicates that the output of BESSI may be accurate even when x is as large as 2000. The upper limit on x is not known.

One call to BESSI generates a series of Bessel and Neumann functions with different orders. For example, if ORD $=0.5$ the functions will have orders $0,1 / 2,2 / 2,3 / 2,4 / 2,5 / 2$, etc. If $O R D=2$, the functions will have orders $0,2,4,6$, etc. These are the orders required in boundaryvalue problems involving wedges and circular-sector cylinders.

BESSI uses the recursion techniques of Reference [5]. For x greater than 10, the phase amplitude-method is employed[6].

In line 39 , the user should replace $1 . \mathrm{E}-38$ with the smallest number his computer can handle without underflow. To obtain a few more Bessel and Neumann functions in the series; one may replace $1 . \mathrm{E}-6$ with a smaller number in line 69, and replace 1.E6 with a larger number in line 154.

To obtain the maximum available number of Bessel and Neumann functions in the series, the required dimensions may be estimated as follows when x is greater than one:

$$
I D M=1.2 x+100-1500 /(x+20)
$$

IDL $=$ IDM/ORD.
SUBRIUUTINE BESSI(X,ORD,BJJ,BYY,BJP,BYP,IDL,IDM,N,BJ,BY) 1
DIMENSIUN BJ(1), BY(1),BJJ\{1), BYY(1), RJP(1),BYP(1) 2
DATA A,PI/.577215665,3.14159265/ 3
 4
B,C17,C18,C19,C20,C21,C22,C23,C24,C25,C26,C27/ 5
C. 25,. 15625,-. $375,1171875,-1.15625,1.875, .952144438 \mathrm{E}-1$, 6
D-2.38671875,14.2265625,-19.6875, -. $809326172 \mathrm{E}-1,-4.10058593$. 7
E5B. $2246094,-277.875,354.375, .416666667 E-1,-.25,0125,-.35$, 8
F. 558035718E-3,-.424107143,3.60267857,-5.625,.30381944E-2. 9
G-. $486111111,10.2864583,-58 ., 78.75 /$ 10
$\mathrm{J}=0$ 11
IF(X.LE.O.)GO TO 1 12
IF(ORO.LF.O.)GO TO 1 13
GO TO 2 14
$1 \quad \mathrm{~N}=\mathrm{J}-1$ 15
RETURN 16
$2 E E=2.1 X$ 17
$I N T=O R D+.5$ 18
IN = 1000.* (ORO-INT) 19
TLOG=ALGG(X/2.) 20
PIH=2./PI 21
TZ=1. (X स X) 22
P14=4./PI 23
GAMM1 $=P I H^{2} \times(A+T L O G)$ 24
$K M A X=X+10 . *(2.2 X * * .333333+1$. 25
$\operatorname{SOPX}=\operatorname{SORT}(, 5$ \& PI \# X$)$ 26
$T P X=2 . /(P I * X)$ 27
$10 \quad J=J+1$ 28
$J M=J-1$ 29
FNUP=JM*URU 30
$\mathrm{N}=\mathrm{FNUP}$ 31
FNU=FNUP-N 2
IF (IN.EO.O)FNU=。O 33
IFIIN.EQ.OIN=I 34
$N P 1=N+1$ 35
1F(NPI.GT.IOM)GO TO 1 36
NMI $=\mathrm{N}-1$ 37
$K=K M A X$8
IFIK.LT.NPI -AND. IN.NE.OIGO TO I 39
$1=\mathrm{K}$ 40
$B J C=0$ 41
$B J B=1, E-38$ 42
$E B=E A \times(I+F N U)$ 43
$35 B J A=E B * B J B-B J C$ 44
IF(I.L.E.IDM)BJ(I)=BJA 45
$E B=E B-E A$ 46
$B J C=B J B$ 47
$B J B=B J A$ 48
$1=1-1$ 49
IF(I.GE. I)GO TO 35 50
IF (K,GT, 10 M$) \mathrm{K}=1 \mathrm{DM}$ 51
$M=(K-1) / 2$ 52
IFIX.GE. 10.1G0 TO 59 53
$\mathrm{PHI}=\mathrm{FNU}+2$. 54
$M O=3$ 55
$A L F=P H I \neq R J(3)+B J(2)$ 56
DO $39 \quad \mathrm{I}=2, \mathrm{M}$ 57
$M O=M O+2$ 58
FM2 = 2* 1 59
FMI=I-1 60
FI=I 61
 62

Fig. 8. Subroutine BESSI.
$\mathrm{PH}]=\mathrm{TEMP}$ 63
39 ALF $=P \mathrm{HI}$ \% $\mathrm{RJ}(\mathrm{MO})+A L F$ 64
GAMM=GAMMA (FNU +1.$)$ 65
$A L F=E A * * F A U * G A M M * A L F$ 66
$41 \quad A J 1=1$. 6
A $\sqrt{ } 2=1$. 68
$J A N=0$ 69
RALF $=1 . / A L F$ 70
JO $43 \quad 1=1$, K 71
IF(JAN, FO. 11 GO TO. 43 72
IF\{AJl.LT. 1.E-6, AND. AJZ.LT. I.E-6)JAN=1 73
$B J(1)=B J(I) * R A L F$ 74
AJl=AJ? 75
AJ2 2 ABS (BJ (I)) 76
$1 \mathrm{MX}=1$ 77
43 CDNTINLE 78
$K=1 M X$ 79
$M=(K-1) / 2$ 80
JF(IN.NE.O AND. IMX.LT.NP1)GO TO 1. 81
GO 10100 82
$59 \mathrm{KDUNT}=1$ 83
GNU=FNU 84
 85
$A 2=C 0 \div A L 1$ 86
$A 4=(C 1 * A L 1+C 2) * A L .1$ 87
$A 6=((C 3 * A L 1+C 4) \div A L 1+C 5) * A L 1$ 88
$A B=\{((C 6 * A L 1+C 7) * A L \cdot 1+C 8) \% A L 1+C 9) * A L 1$ 89
$A 10=(((1 C 10 * A L 1+C 11) * A L 1+C 12) * A L 1+C 13) * A L 1+C 14) * A L 1$ 90
$B=(((A 10 \div T 2+A B) \div T 2+A 6) \div T 2+A 4\} * T 2+A 2$ 91
$B N U=B * T 2+1.0$ 92
$A N J=B N U / S Q P X$ 93
A2 $=.5$ *AI 1 4
$A 4=(C 15 * A L 1+C 16) \neq A L 1$ 95
$A 6=(\{C 17 * A L 1+C 18) * A L 1+.75) * A L 1$ 96
$A B=(((C 19 * A L 1+C 20) * A L 1+C 21) * A L 1+C 22) * A L 1$ 97
$A 10=((1(C 23 * A L 1+C .24) * A L .1+C .25) * A L 1+C 26) * A L .1+C 27) * A L 1$ 98
$B=(((A 10 * T 2+A 8) * T 2+A 6) * T 2+A 4) * T 2+A 2$ 99
TPHI $=\mathrm{B} * \mathrm{~T} 2+1.0$ 100
$\mathrm{PHI}=\mathrm{TPHI}+\mathrm{X}-\left(\mathrm{GNU}+{ }^{2} 5\right) / \mathrm{PIH}$ 101
Fl=ANU*COS(PHI) 102
Yl=ANU㝏SIN(PHI) 103
IF(KOUNT.GT.1JGO TO 65 104
FSAVE =F 105
BY(1)=Y1 106
GNU $=\mathrm{FNU}+1.0$ 107
KOUNT=2 108
GO TO 61 109
$65 \quad \mathrm{~F} 2=\mathrm{F} 1$ 110
$B Y(2)=Y 1$ 111
Fl=FSAVE 112
$A L F=B .1(2) / F 2$ 113
IF(ABSiF1).GT.AHS(F2))ALF=BJ(1)/F1 114
GO TO 41 115
100 IF(X.GE. 10.) G[J TO 150 116
$A R G=F N H)$ © P I 117
GARG=GAMM\#\# 2 118
IF (FNLI.EO. O. IGO TO 116 119
TERM=(1./PI)*EAx* (2.*FNU) 120
GAM1 $=$ COS (ARG)/SIN(ARG) - TERM立 (GARG/FNU) 121
GAM2 = 2. O~TFRM*GARG* (FNU+2.0)/(1.0-FNU) 122
GO TO 117 123
116 GAMI = GAMMI 124

Fig. 8.
GAM2 $=$ PI 4 125
$117 \operatorname{BY}(2)=-(1 . / P I) * R J(1) * E A * *(1 .+2 . * F N U) * G A R G+(G A M 1-G A M 2 / 2) * B J.(2) 126$YNU=GAM1*B.1(1)127
TXNU=3. OFFNIJ/X 128
$A B=A B S(B J(1))-0.000005$ 129
$M P 1=M+1$ 130
$12=1$ 131
$001211=2, \mathrm{MPl}$ 132
$12=12+2$ 133
FI=I 134
FIM=I-1 135
FI2=2*I 136
$D E N O M=F I *(F I-F N U) *(F N U+F I 2-2.0)$ 137
GAM3 $=(F N(i+F I 2) *(2.0 * F N(J+F I M) *(F N J+F I M) / 0 E N O M$ 138
GAM3 $=-$ GAM $3 * G A M 2$ 139
$Y N U=G A M 2 \div B J(12)+Y N U$ 140
IF(AB.GT.O.)GO TO 120 141
$E 1=Y \times N(1)=G A M 2$ 142
$B Y(2)=E 1 * B J(12)+B Y(2)$ 143
IF(12.GE.K)GO TD 130 144
$E 1=(G A M 2-G A M 3) / 2$. 145
BY(2)=E1*\&J(12+1)+BY(2) 146
120 GAM1=GAM2 147
121 GAM2=GAM3 148
$130 \mathrm{BY}(1)=\mathrm{YNH}$ 149
IF (AB.GT.O.) $B Y(2)=(Y N U * B J(2)-T P X) / B J(1)$ 150
$150 \mathrm{~J} A N=0$ 151
$A B Y=A B S\{B Y(2)\}$ 152
$M A X=N M 1$ 153
IF\{IN.FQ.OTMAX=K 154
D0 $160 \quad \mathrm{I}=1$, MAX 155
IF (JAN.E日. 1 IGO TU 160 156
$1 M X=1+2$ 157
IF (ABY.GT. 1.EGIJAN=1 158
159
$A B Y=A B S(R Y(I+2))$ 160
160 CONTINJE 161
IFIIN.EO. OIGO TO 300 162
IF(IMX.LT.NPI)GO TO 1 163
BJJ (J)=8J (NP1) 164
$B Y Y(J)=B Y(N P 1)$ 165
IF (J.GT. 1)GO TO 210 166
BJP $(1)=-B J(2)$ 167
$B Y P(1)=-B Y(2)$ 168
(G) TO 220 169
210 FAC $=F N U P / X$ 170
$B J P(J)=-F A C=B J(N P 1)+B J(N)$ 171
$B Y P(J)=-F A C=B Y(N P 1)+B Y(N)$ 172
220 IF(J.LT.IDL)GO TO 10 173$N=J$174
RETURN 175
300 BJJ (1)=RJ(1) 176
BYY(1)=BY(1) 177
$B J P(1)=-B J(Z)$ 178
$B Y P(1)=-B Y(2)$ 179
$N=K$ 180
IFIIMX.LT.KIN=IMX 181
$\mathrm{N}=1+(\mathrm{N}-1) / \mathrm{INT}$ 182
1F(N.GT. 1OL)N=IDL 183
$00350 \quad 1=2, \mathrm{~N}$ 184
$L=1+(I-1) \neq 1 N T$ 185
$\mathrm{LM}=\mathrm{L}-1$ 186

Fig. 8.
タJJ(I)=BJ(L) - $\quad 187$$B Y Y(I)=B Y(L)$188
189$F A C=L M / X$
$B J P(I)=-F A C * B J(L)+B J(L M)$ 190
350 BYP(I) $=-F A C * B Y(L)+B Y(L M)$ 191
RETURN 192
END 193

Fig. 8.
SUBROUTINE SORDT(C, S,IWR, IL2, NED) 0001 0002
COMPLEX C(1),5(1),SS
COMPLEX C(1),5(1),SS
2 FORMAT(1X,1I5,1F10.3,1F15.7,1F10.0,2F15.6)
2 FORMAT(1X,1I5,1F10.3,1F15.7,1F10.0,2F15.6) 0003 0003 0004
N=NEO 0005
1f(112.E日.2)GO ro 20 0006
C(1)=CSART(C(1)) 0007
$004 \mathrm{~K}=2, \mathrm{~N}$ 0008
$C(K)=C(K) / C(1)$ 0009
DO $10 \quad \mathrm{i}=2, \mathrm{~N}$ 0010
I MO $=1-1$ 0011
1 $\mathrm{P}(\mathbf{O}=1+1$ 0012
$10=(1-1) * N-(1 * I-I) / 2$ 0013
$11=10+1$0014
$005 \mathrm{~L}=1$, IMO 0015
$L I=(L-1) * N-(L * L-L) / 2+I$ 0016
$5 \quad \mathrm{C}(I)=\mathrm{C}(11)-\mathrm{C}(\mathrm{LI}) * \mathrm{C}(\mathrm{LI})$ 0017
C(II)=CSORT(C(II)) 0018
IF (IPO, GT.NIGO TO 10 0019
$008 \mathrm{~J}=\mathrm{IPO}, \mathrm{N}$ 0020
$1 \mathrm{~J}=\mathrm{I} 0+\mathrm{J}$ 0021
DO $6 \mathrm{M}=1$, $\mathrm{I} M 0$ 0022
$M D=(M-1) * N-(M * M-M) / 2$ 0023
$M I=M D+1$ 0024
$M J=M D+J$ 0025
$6 \mathrm{C}(\mathrm{IJ})=\mathrm{C}(\mathrm{IJ})-C(\mathrm{MJ}) * \mathrm{C}(\mathrm{MI})$ 0026
$8 \quad C(I J)=C(I J) / C(I I)$ 0027
10 CONTINUE 0028
$20 \quad \$(1)=S(1) / C(1)$ 0029
DO $30 \quad \mathrm{I}=2, \mathrm{~N}$ 0030
IMO $\mathrm{I}-1$ 0031
00 $25 \mathrm{~L}=1$, 1 MO 0032
$L I=(L-1) * N-(L * L-L) / 2+I$ 0033
25 S(1)=S(1)-C(LI)\#S(L) 0034
$\mathrm{II}=(\mathrm{I}-\mathrm{I}) * \mathrm{~N}-(\mathrm{I} * \mathrm{I}-\mathrm{I}) / 2+\mathrm{I}$ 0035
$30 \quad S(1)=S(1) / C(I I)$ 0036
$\mathrm{N} N=((\mathrm{N}+1) \neq \mathrm{N}) / 2$ 0037
$S(N)=S(N) / C(N N)$ 0038
$\mathrm{NMO}=\mathrm{N}-1$ 0039
DO $40 \mathrm{I}=1$, NMO 0040
$\mathrm{K}=\mathrm{N}-1$ 0041
$K P O=K+1$ 0042
$K D=(K-1) * N-(K * K-K) / 2$ 0043
OO $35 \mathrm{~L}=\mathrm{KPO}, \mathrm{N}$ 0044
$K L=K D+L$ 0045
$35 S(K)=S(K)-C(K L) * S(L)$ 0046
$K K=K D+K$ 0047
$40 \quad S(K)=S(K) / C(K K)$ 0048
IF(IWR.LE. O) GO TO 100 0049
WRITE(6.3) 0050
CNOR $=0$ 0051
DO $50 \quad \mathrm{I}=1, \mathrm{~N}$ 0052
$5 A=C A B S(S(1))$ 0053
IF(SA.GT.CNORICNDR $=5 A$ 0054
IF(CNDR. LE.O.)CNOR=1. 0055
DO $60 \quad \mathrm{I}=1, \mathrm{~N}$ 0056
$S S=5(1)$ 0057
SA=CABS(SS.) 0058
SNUR = SA/CNOR 0059
$\mathrm{PH}=.0$0060
IF(SA.GT.0.)PH=57.29578*ATANZ(AIMAG(SS), REAL(SS)) 0061
60 WRITE(6,2)I,SNOR,5A,PH,SS 0062

Fig. 9. Subroutine SQROT.
WRITE(6,3) 0063
100 RETURN
END

0065

Fig. 9.
SUBROUTINE GLJ（LL，JJ，PHBR，PHCR，SGC，FLJ） 0001
DIMENSION SGC（150） 0002
DATA PI／3．14159／ 0003
J＝JJー1 0004
$S G J=(-1) * * J$ 0005
L＝LL－1 0006
$F L J=.5$ 0007
GNU＝L＊ H 1／PHBR 0008
SC＝SGC（LL） 0009
GNUS＝GNU ${ }^{\text {GNL }}$ 0010
 0011
 0012
IF TTEST．GT．．OO1 IFLJ＝SGJ＊GNUS＊SC／DEN 0013
RETURN 0014
END 0015

Fig．10．Subroutine GLJ．
SUBROUTINE GNJ（M，JJ，PHCR，SNC，FNJ） 0001
DIMENSION SNC（150） 0002
DATA PI／3．14159／ 0003
$J=J J-1$ 0004
SGJ＝（－1）市方 J 0005
$N=M-1$ 0006
$N S=N \neq N$ 0007
$S C=S N C(M)$ 0008
$F N J=.5$ 0009
TEST＝ABS（N－J＊PI／PHCR） 0010
$D E N=N S-(J * P I / P H C R) * * 2$ 0011
IF（TEST．GT．．OO1）FNJ＝5GJ＊NS＊SC／DEN 0012
RETURN 0013
END 0014

Fig．11．Subroutine GNJ．

APPENDIX III
SUBROUTINE SQROT

This subroutine considers the matrix equation ZI $=V$ which represents a system of simultaneous linear equations. If the square matrix Z is symmetric, SQROT is useful for obtaining the solution I with V given. NEQ denotes the number of simultaneous equations and the size of the matrix Z.

On entry to SQROT, S is the excitation column V. On exit, the solution I is stored in S. Let $Z(I, J)$ denote the symmetric square matrix. On entry to SQROT, the upper-right triangular portion of $Z(I, J)$ is stored by rows in C(K) with

$$
\begin{equation*}
K=(I-1) * N E Q-(I * I-I) / 2+J \tag{37}
\end{equation*}
$$

If I12 $=1$, SQROT will transform the symmetric matrix into the auxiliary matrix (implicit inverse), store the result in $C(K)$ and use the auxiliary matrix to solve the simultaneous equations. If I12 $=2$, this indicates that $C(K)$ already contains the auxiliary matrix.

The transformation from the symmetric matrix to the auxiliary matrix is programmed above statement 10, and the solution of the simultaneous equations is programmed in statements 20 to 40 . If IWR is positive, the program below statement 40 will write the solution.

SQROT uses the square root method described in Reference [4]. The original symmetric matrix Z and the upper triangular auxiliary matrix A are related by

$$
\begin{equation*}
Z=A^{\prime} A \tag{38}
\end{equation*}
$$

where A^{\prime} is the transpose of A.
The determinant of the symmetric matrix Z may be obtained by squaring the product of the diagonal elements in the auxiliary matrix.

SQROT was developed by Dr. Robert G. Wickliff Jr., now with Hewlett Packard, Colorado Springs, Colorado 80907.

ACKNOWLEDGMENT

The experimental data presented herein were measured by Melvin C. Gilreath at NASA Langley Research Center. His kind permission to reproduce these antenna patterns is truly appreciated.

