254 research outputs found

    Two-Stage Change Detection for Synthetic Aperture Radar

    Get PDF
    Coherent change detection using paired synthetic aperture radar (SAR) images is often performed using a classical coherence estimator that is invariant to the true variances of the populations underlying each paired sample. While attractive, this estimator is biased and requires a significant number of samples to yield good performance. Increasing sample size often results in decreased image resolution. Thus, we propose the use of Berger's coherence estimate because, with the same number of pixels, the estimator effectively doubles the sample support without sacrificing resolution when the underlying population variances are equal or near equal. A potential drawback of this approach is that it is not invariant since its distribution depends on the pixel pair population variances. While Berger's estimator is inherently sensitive to the inequality of population variances, we propose a method of insulating the detector from this acuity. A two-stage change statistic is introduced to combine a noncoherent intensity change statistic given by the sample variance ratio, followed by the alternative Berger estimator, which assumes equal population variances. The first-stage detector identifies pixel pairs that have nonequal variances as changes caused by the displacement of sizeable object. The pixel pairs that are identified to have equal or near-equal variances in the first stage are used as an input to the second stage. The second-stage test uses the alternative Berger coherence estimator to detect subtle changes such as tire tracks and footprints. We show experimentally that the proposed method yields higher contrast SAR change detection images than the classical coherent change detector (state of the art), the alternative coherent change detector, and the intensity change detector. Experimental results are presented to show the effectiveness and robustness of the proposed algorithm for SAR change detection

    The Importance of Craniofacial Sutures in Biomechanical Finite Element Models of the Domestic Pig

    Get PDF
    Craniofacial sutures are a ubiquitous feature of the vertebrate skull. Previous experimental work has shown that bone strain magnitudes and orientations often vary when moving from one bone to another, across a craniofacial suture. This has led to the hypothesis that craniofacial sutures act to modify the strain environment of the skull, possibly as a mode of dissipating high stresses generated during feeding or impact. This study tests the hypothesis that the introduction of craniofacial sutures into finite element (FE) models of a modern domestic pig skull would improve model accuracy compared to a model without sutures. This allowed the mechanical effects of sutures to be assessed in isolation from other confounding variables. These models were also validated against strain gauge data collected from the same specimen ex vivo. The experimental strain data showed notable strain differences between adjacent bones, but this effect was generally not observed in either model. It was found that the inclusion of sutures in finite element models affected strain magnitudes, ratios, orientations and contour patterns, yet contrary to expectations, this did not improve the fit of the model to the experimental data, but resulted in a model that was less accurate. It is demonstrated that the presence or absence of sutures alone is not responsible for the inaccuracies in model strain, and is suggested that variations in local bone material properties, which were not accounted for by the FE models, could instead be responsible for the pattern of results

    Multilevel model to assess sources of variation in follicular growth close to the time of ovulation in women with normal fertility: a multicenter observational study

    Get PDF
    Mikolajczyk RT, Stanford JB, Ecochard R. Multilevel model to assess sources of variation in follicular growth close to the time of ovulation in women with normal fertility: a multicenter observational study. Reproductive Biology and Endocrinology. 2008;6(1): 61.Background: To assess the amount of variability in ovarian follicular growth rate and maximum follicular diameter related to different centers, women and cycles of the same women in a multicenter observational study of follicular growth. Methods: Secondary analysis of a prospective cohort study from eight centers in Europe. There were 533 ultrasound examinations in 282 cycles of 107 women with normal fertility. A random effects model with center, woman and cycle as hierarchical units of variation was used to analyze mean follicular diameter on days preceding ovulation. Results: Follicular growth did not differ by center. There was homogenous growth across women and cycles, and the maximum follicular diameter before ovulation varied substantially across cycles but not across women. Many (about 40%) women had small maximum follicular diameter on the day before ovulation (<19 mm). Pre-ovulatory cycle length was not related to maximum follicular diameter. Conclusion: In normal fecundity, there is a substantial variation in maximum follicular diameter from cycle to cycle based on variation in the duration of follicular development, but the variation could not be explained by different characteristics of different women. Explanation of variation in follicular growth has to be found on the cycle level

    The incidence of smoking and risk factors for smoking initiation in medical faculty students: cohort study

    Get PDF
    BACKGROUND: Medical education requires detailed investigation because it is a period during which the attitudes and behaviors of physicians develop. The purpose of this study was to calculate the yearly smoking prevalence and incidence rates of medical faculty students and to identify the risk factors for adopting smoking behaviour. METHODS: This is a cohort study in which every student was asked about their smoking habits at the time of first registration to the medical faculty, and was monitored every year. Smoking prevalence, yearly incidence of initiation of smoking and average years of smoking were calculated in analysis. RESULTS: At the time of registration, 21.8% of the students smoked. At the end of six years, males had smoked for an average of 2.6 ± 3.0 years and females for 1.0 ± 1.8 years (p < 0.05). Of the 93 medical students who were not smokers at the time of registration, 30 (32.3%) were smokers at the end of the 6 years of the course. CONCLUSION: The first 3 years of medical education are the most risky period for initiation of smoking. We found that factors such as being male, having a smoking friend in the same environment and having a high trait anxiety score were related to the initiation of smoking. Targeted smoking training should be mandatory for students in the Medical Faculty

    Overweight and obesity in relation to cardiovascular disease risk factors among medical students in Crete, Greece

    Get PDF
    BACKGROUND: Recent data indicate increasing rates of adult obesity and mortality from cardiovascular disease (CVD) in Greece. No data, however, are available on prevalence of overweight and obesity in relation to CVD risk factors among young adults in Greece. METHODS: A total of 989 third-year medical students (527 men, 462 women), aged 22 ± 2 years, were recruited from the University of Crete during the period 1989–2001. Anthropometric measures and blood chemistries were obtained. The relationships between obesity indices (body mass index [BMI], waist circumference [WC], waist-to-hip ratio [WHpR], waist-to-height ratio [WHtR]) and CVD risk factor variables (blood pressure, glucose, serum lipoproteins) were investigated. RESULTS: Approximately 40% of men and 23% of women had BMI ≥ 25.0 kg/m(2). Central obesity was found in 33.4% (average percentage corresponding to WC ≥ 90 cm, WHpR ≥ 0.9 and WHtR ≥ 50.0) of male and 21.7% (using WC ≥ 80 cm, WHpR ≥ 0.8, WHtR ≥ 50.0) of female students. Subjects above the obesity indices cut-offs had significantly higher values of CVD risk factor variables. BMI was the strongest predictor of hypertension. WHtR in men and WC in women were the most important indicators of dyslipidaemia. CONCLUSION: A substantial proportion of Greek medical students were overweight or obese, obesity status being related to the presence of hypertension and dyslipidaemia. Simple anthropometric indices can be used to identify these CVD risk factors. Our results underscore the need to implement health promotion programmes and perform large-scale epidemiological studies within the general Greek young adult population

    Pheromone-sensing neurons regulate peripheral lipid metabolism in <i>Caenorhabditis elegans</i>

    Get PDF
    It is now established that the central nervous system plays an important role in regulating whole body metabolism and energy balance. However, the extent to which sensory systems relay environmental information to modulate metabolic events in peripheral tissues has remained poorly understood. In addition, it has been challenging to map the molecular mechanisms underlying discrete sensory modalities with respect to their role in lipid metabolism. In previous work our lab has identified instructive roles for serotonin signaling as a surrogate for food availability, as well as oxygen sensing, in the control of whole body metabolism. In this study, we now identify a role for a pair of pheromone-sensing neurons in regulating fat metabolism in C. elegans, which has emerged as a tractable and highly informative model to study the neurobiology of metabolism. A genetic screen revealed that GPA-3, a member of the Gα family of G proteins, regulates body fat content in the intestine, the major metabolic organ for C. elegans. Genetic and reconstitution studies revealed that the potent body fat phenotype of gpa-3 null mutants is controlled from a pair of neurons called ADL(L/R). We show that cAMP functions as the second messenger in the ADL neurons, and regulates body fat stores via the neurotransmitter acetylcholine, from downstream neurons. We find that the pheromone ascr#3, which is detected by the ADL neurons, regulates body fat stores in a GPA-3-dependent manner. We define here a third sensory modality, pheromone sensing, as a major regulator of body fat metabolism. The pheromone ascr#3 is an indicator of population density, thus we hypothesize that pheromone sensing provides a salient 'denominator' to evaluate the amount of food available within a population and to accordingly adjust metabolic rate and body fat levels
    • …
    corecore