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Abstract

Coherent change detection using paired synthetic aperture radar images is often performed using a

classical coherence estimator that is invariant to the true variances of the populations underlying each

paired sample. While attractive, this estimator is biased and requires a significant number of samples

to yield good performance. Increasing sample size often results in decreased image resolution. Thus,

we propose use of Berger’s coherence estimate because with the same number of pixels, the estimator

effectively doubles the sample support without sacrificing resolution when the underlying population

variances are equal or near equal. A potential drawback of this approach is that it is not invariant since

its distribution depends on the pixel pair population variances. While Berger’s estimator is inherently

sensitive to the inequality of population variances, we propose a method of insulating the detector

from this acuity. A two-stage change statistic is introduced to combine a non-coherent intensity change

statistic given by the sample variance ratio followed by the alternative Berger estimator which assumes

equal population variances. The first stage detector identifies pixel pairs that have non-equal variances as

changes caused by the displacement of sizable object. The pixel pairs that are identified to have equal or

near equal variances in the first stage are used as an input to the second stage. The second stage test uses

the alternative Berger coherence estimator to detect subtle changes such as tire tracks and footprints.

We show experimentally that the proposed method yields higher contrast SAR change detection images
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than the classical coherent change detector (state of the art), alternative coherent change detector, and

intensity change detector. Experimental results are presented to show the effectiveness and robustness

of the proposed algorithm for SAR change detection.

I. INTRODUCTION

Synthetic aperture radar (SAR) is an important modality in remote sensing due to its ability

to form high resolution images with relative invariance to weather and lighting conditions.

SAR images are formed using a moving radar that collects data over a scene from multiple

perspectives. The resulting data are complex-valued, with the magnitude corresponding to the

reflected signal intensity of the scene and the phase indicating scattering properties.

One application of SAR is change detection, which utilizes two SAR data collections of the

same scene at different times to infer changes that have occurred in between data collections [1].

SAR change detection algorithms can be categorized into two: 1) non-coherent intensity change

detection utilizing local changes in SAR magnitude images to indicate large-scale changes, such

as the appearance of a sizeable object during the second collection that was not present during

the first; and 2) coherent change detection (CCD) that uses SAR phase as well as magnitude to

estimate the coherence between the two SAR images. CCD requires the two image collections

to use identical collection geometries, so that each respective image phase is aligned, leading

to the detection of smaller-scale changes, such as those made by a vehicle driving on a soft

surface [2] [3]. Additionally, some work [4] [5] consider change detection between polarimetric

acquisitions since polarimetric analysis can enhance discrimination capability.

As [6]–[8] have investigated, the traditional coherence magnitude estimator is biased, particu-

larly when the true coherence is small. This bias can be reduced by an increase in the number of

samples. However, in practice, there are a limited number of samples to be obtained from each

spatial location in a pair of SAR images, as they must be “borrowed” from a local neighborhood

or spatial window. As the number of neighboring pixels used to estimate coherence is increased,

the effective spatial resolution of the resulting CCD image is decreased, making detection of

small-scale changes more difficult. Furthermore, as the size of the sample window increases, the

assumption that the samples are drawn independently from the same distribution is less likely

to be met. Accurate estimation of coherence from a limited number of samples is a challenging

problem, which must be overcome either through better models for the data or more accurate
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estimators.

Here we adopt the latter approach and introduce a two-stage method that leverages both non-

coherent and coherent algorithms for SAR change detection. Similar to the approach in [9], we

jointly use intensity and coherence characteristics of SAR images. First, non-coherent intensity

change detection is employed to identify large-scale changes. Then coherent change detection

using a coherence estimator is utilized to detect small-scale changes. Traditionally, the classical

estimator based on the Pearson correlation coefficient is used for coherence, however, [10] shows

that with reasonable assumptions, an alternative coherence estimator yields better coherence

estimation and change detection performance. This alternative coherence estimator assumes both

populations have equal variances, which is more likely after the application of the first test. In this

work, we perform further analysis to characterize the performance of the alternative coherence

estimator, and analyze its performance within the two-stage change detection procedure. An

exact joint probability density function for the statistics of the two-stage CCD is derived. The

focus of this initial study, however, will be the development of a heuristic approach to threshold

selection and the presentation of encouraging results from empirical data analysis due to the

integral of the joint density function being non-trivial to be solved analytically.

The organization for the remainder of the paper is as follows. In Section II, we provide a

detailed formulation of the intensity change detection, the traditional coherent change detection

and the alternative coherent change detection. Section III derives the new two-stage change

detection technique that utilizes intensity change detection in the first stage and the alternative

coherence statistic in the second stage. As we will focus on a heuristic approach to the two-stage

change detection, in Section IV, we discuss statistical effects of combining the first and the second

stage tests. Section V contains numerical and experimental results to show the effectiveness of

the proposed algorithm for SAR change detection, and Section VI concludes the paper.

II. CHANGE DETECTION

SAR data is often assumed to be collections of spatially uncorrelated pixels drawn from a

zero-mean circularly complex Gaussian distribution. The statistic used to estimate change in

SAR data sets, corresponding to the estimated coherence between a pair of SAR observations,

is thus a random variable depending on the true underlying coherence as well as the number of

samples employed in coherence estimation.
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Given two spatially registered SAR data sets, f and g of N pixels, one can form a joint data

vector X = [f, g]T ∈ CN×2. The N sample pairs of observations, Xk = [fk, gk], k = 1, . . . , N ,

are viewed as independent samples from a zero-mean, bivariate, complex Gaussian distribution

with covariance matrix

Σ = E(XXH) =

 σ2
f ρσfσg

ρ̄σfσg σ2
g

 , (1)

where

σ2
f = E(|f |2), σ2

g = E(|g|2), ρ =
E(fgH)√

E(|f |2)E(|g|2)
. (2)

Here ρ is the complex correlation coefficient, and ρ̄ denotes its complex conjugate. The covariance

matrix Σ is typically estimated by the maximum likelihood estimator,

1

N

N∑
k=1

XkX
H
k =

1

N

 ∑
k |fk|2

∑
k fkg

H
k∑

k f
H
k gk

∑
k |gk|2

 ≡
 σ̂2

f ρ̂σ̂f σ̂g

ˆ̄ρσ̂f σ̂g σ̂2
g

 ,
1

N
A, (3)

whose distribution is given by a bivariate complex Wishart density [11],

p(A; Σ, N) =
|A|N−2 exp(−tr(Σ−1A))

πΓ(N)Γ(N − 1)|Σ|N
. (4)

The function p(A; Σ, N) is defined over the domain where A is Hermitian positive definite. In

practice, A is obtained using a spatial window of fk and gk in the respective SAR images. The

following subsections describe the classical methods of SAR change detection assuming this

statistical model of the SAR data.

A. Non-coherent Intensity Change Detection

Intensity based change detection between remote sensing images is often achieved using one

of two operations: subtracting the two images to identify change as a large difference, or dividing

the two images to identify change as a quotient that significantly deviates from unity [12] [13].

SAR change detection uses the quotient approach [14]: change is estimated using the result

of dividing one magnitude image by the other. Specifically, a variance at one location in f is

estimated using a spatial window and the corresponding variance of g is estimated, and the

change statistic is

R̂ =
σ̂2
f

σ̂2
g

. (5)
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Values of R̂ that differ substantially from one are labeled as change. This statistic is frequently

used to test if the underlying variances of two populations are different. The probability density

function of R̂ is given by [15]:

p(R̂;R, |ρ|, N) = R̂N−1(R̂+R)RN (1−|ρ|2)N

B(N,N)[(R̂+R)2−4RR̂|ρ|2]N+1/2 , R̂ ≥ 0 (6)

where B(N,N) is the beta function and R = σ2
f/σ

2
g , i.e. the ratio of the true variances.

The problem of detecting different population variances is formulated as a hypothesis test,

where the null hypothesis is that the two population variances are equal and the alternative

hypothesis is that those populations have different variances. In the absence of correlation, the

sample variance ratio R̂ is proportional to a central F2N,2N distribution if the null hypothesis

σf = σg is true, making this test an F -test. Therefore, if the null hypothesis is true and ρ = 0,

F (R|H0) ≡ P (R̂ ≤ R|H0) = IR/(1+R)(N,N), (7)

where Iv(a, b) is the incomplete beta function [16]. For a chosen test significance level α, the

upper critical value Ru,α and the lower critical value Rl,α of the F2N,2N distribution can be found

such that

F (Ru,α|H0) = 1− α
2
, F (Rl,α|H0) = α

2
. (8)

A sample value R̂ such that R̂ < Rl,α or R̂ > Ru,α results in the null hypothesis being rejected

at significance level α. When applied to SAR change detection, rejection of the null hypothesis

indicates change. This test will reveal large-scale changes that affect SAR magnitude values,

such as a car that appears in one image but not another. Smaller scale change detection requires

a different change detection method. It will be shown that changes such that σf 6= σg can occur

for a wide range of coherence values |ρ| ∈ [0, 1]. Those that correspond to large scale changes

are more likely when |ρ| = 0. This will be the basis for the method of threshold selection for

R̂ and is discussed in more detail in Section IV-B.

B. Classical Coherent Change Detection

While non-coherent change detection is generally applicable to any type of real-valued image,

coherent change detection is applicable to complex data and exploits both magnitude and phase.

The additional phase data allows smaller scale changes to be detected, such as tire imprints on

soft soil. The small ground surface change affects radar scattering, which affects phase. The
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parameter that is often used to indicate this type of change is coherence ρ, which is often

estimated using a classical coherence estimator,

ρ̂c =
A12√

A11

√
A22

. (9)

Denote that A = [A11, A12;A21, A22] in (3). The statistic |ρ̂c| is a random variable distributed

according to

p(|ρ̂c|; |ρ|, N) = 2(N − 1)(1− |ρ|2)N |ρ̂c|(1− |ρ̂c|2)N−22F1(N,N ; 1; |ρ|2|ρ̂c|2), (10)

where 2F1(·, ·; ·; ·) is the Gauss hypergeometric function [6]. This distribution is invariant to σf

and σg, and only depends on the true underlying coherence magnitude |ρ| and number of samples

used in estimation N . Examples of this distribution for different values of |ρ| and N are shown

as a blue line in Fig. 1. Notice that the bias of the estimator increases with decreasing |ρ|, and

is especially pronounced when N is small. Since the number of samples available for coherence

estimation is often small in practice, this bias could affect change detection by decreasing true

positives.
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Fig. 1: Sampling distributions of |ρ̂c| (blue) and |ρ̂a| (red) shown as a function of sample size

N , for true parameter values σf = σg, (a) |ρ| = 0.2 and (b) |ρ| = 0.6.
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Note that as a single pair of SAR images is assumed available, only a limited number of

samples is available to estimate coherence. The size of the spatial neighborhood can be increased

to increase the effective number of samples. This can have unintended effects though, such as

smoothing the eventual CCD image and resulting in missed change detection, especially for

subtle ground changes. However, using a coherence estimator capable of exploiting a near equal

variance scenario has the potential to effectively double the number of samples available for

estimation. Figure 1 shows that this could have benefits especially in the very low sample

support cases, e.g. N ≤ 5.

C. Berger’s Alternative Coherent Change Detection

An alternative coherence estimator, introduced by Berger [7], that assumes variance equality

is explored as a means of improving change detection performance. As change detection requires

two SAR images of the same scene, the underlying variances will be near equal absent significant

changes. When this equal variance assumption is met, the natural estimator of the complex

correlation coefficient ρ, denoted ρ̂a, can be written as a function of the elements of A as

ρ̂a =
2A12

(A11 + A22)
. (11)

Notice that the denominator contains a sum rather than a product of two random variables,

suggesting a more stable estimator. Furthermore, since this estimator assumes both variance terms

are equal, the number of samples used to estimate the true variance is potentially doubled. In

scenes where most of the underlying variance remains unchanged, this estimator can be expected

to offer improved properties over the classical estimator ρ̂c of (9).

The expression for the probability density function of estimated coherence magnitude |ρ̂a| is

derived by several authors, including in [7]:

p(|ρ̂a|; |ρ|, N) = (2N − 1)(1− |ρ|2)N |ρ̂a|(1− |ρ̂a|2)N−
3
2 2F1(N,N + 1/2; 1; |ρ|2|ρ̂a|2). (12)

This assumes σf = σg and only parameterized by |ρ| and N . Examples of the distribution of |ρ̂a|

for a fixed N and |ρ| are also shown in red in Fig. 1. The distribution of |ρ̂a| appears to have

a modestly lower bias as its peak is closer to the true coherence value than the distribution of

|ρ̂c|. For large values of N , both probability distributions tend toward E[|ρ|]. These results hint

that better estimation is possible using |ρ̂a|, however, concluding |ρ̂a| outperforms |ρ̂c| requires

further analysis. The mean squared error for both estimators is derived below.
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D. Mean Squared Error of |ρ̂c| and |ρ̂a|

The behavior of both coherence estimators can be examined by computing their mean squared

error (MSE). The MSE of an estimator |ρ̂| is defined as

MSE(|ρ̂|) = E[(|ρ̂| − |ρ|)2]

=

∫ 1

0

(|ρ̂| − |ρ|)2p(|ρ̂|) d|ρ̂|. (13)

Assuming σf = σg and using (10), the MSE of |ρ̂c| can be written as

E[(|ρ̂c| − |ρ|)2] = 2(N − 1)(1− |ρ|2)N
∫ 1

0

(|ρ̂c| − |ρ|)2|ρ̂c|(1− |ρ̂c|2)N−22F1(N,N ; 1; |ρ|2|ρ̂c|2) d|ρ̂c|

= 2(N − 1)(1− |ρ|2)N
[∫ 1

0

|ρ̂c|3(1− |ρ̂c|2)N−22F1(N,N ; 1; |ρ|2|ρ̂c|2) d|ρ̂c|

−
∫ 1

0

2|ρ||ρ̂c|2(1− |ρ̂c|2)N−22F1(N,N ; 1; |ρ|2|ρ̂c|2) d|ρ̂c|

+

∫ 1

0

|ρ|2|ρ̂c|(1− |ρ̂c|2)N−22F1(N,N ; 1; |ρ|2|ρ̂c|2) d|ρ̂c|
]
. (14)

Following [17],∫ 1

0

(1−x)µ−1xν−1pFq(a1, ..., ap; b1, ..., bq; ax) dx =
Γ(µ)Γ(ν)

Γ(µ+ ν)
p+1Fq+1(ν, a1, ..., ap;µ+ν, b1, ..., bq; a)

where Γ(·) is the Gamma function and pFq(·, ·; ·; ·) is the generalized hypergeometric function,

the analytical expression for the MSE of |ρ̂c| is

E[(|ρ̂c| − |ρ|)2] = Γ(N)(1− |ρ|2)N

·
[

Γ(2)

Γ(N + 1)
3F2(2, N,N ;N + 1, 1; |ρ|2)− 2|ρ|

Γ(3
2
)

Γ(N + 1
2
)

· 3F2

(
3

2
, N,N ;N +

1

2
, 1; |ρ|2

)
+|ρ|2 1

Γ(N)
3F2(1, N,N ;N, 1; |ρ|2)

]
. (15)
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Similarly, the MSE of |ρ̂a| is

E[(|ρ̂a| − |ρ|)2] = Γ(N +
1

2
)(1− |ρ|2)N

·
[

Γ(2)

Γ(N + 3
2
)
3F2(2, N,N +

1

2
;N +

3

2
, 1; |ρ|2)− 2|ρ|

Γ(3
2
)

Γ(N + 1)

· 3F2

(
3

2
, N,N +

1

2
;N + 1, 1; |ρ|2

)
+|ρ|2 1

Γ(N + 1
2
)
3F2(1, N,N +

1

2
;N +

1

2
, 1; |ρ|2)

]
. (16)
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Fig. 2: (a) Mean squared error versus N for |ρ| = 0.2, |ρ| = 0.4, |ρ| = 0.6 and |ρ| = 0.9. (b)

The blue region indicates the domain where MSE(|ρ̂a|) < MSE(|ρ̂c|) in a range of N from 1 to

80.

Fig. 2 (a) plots the MSE values with respect to the number of samples for true coherence

values of |ρ| = 0.2, |ρ| = 0.4, |ρ| = 0.6, and |ρ| = 0.9. Note that the MSE values of |ρ̂a|

are typically less than the MSE values of |ρ̂c|, especially when |ρ| is low, i.e., change has

occurred. In Fig. 2 (b), the blue surface is the region where MSE(|ρ̂a|) < MSE(|ρ̂c|). Note that

MSE(|ρ̂a|) < MSE(|ρ̂c|) when the coherence is low, especially when a small number of samples

is used for estimation. For large values of N , the changeover point is |ρ| ≈ .7.

From this MSE analysis, we can conclude that |ρ̂a| is better than |ρ̂c| for change detection at

least when σf ≈ σg (a condition for which a first stage detector can screen) and |ρ| . 0.7. Change,
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the state of interest in change detection, is represented by ρ ≈ 0, where MSE(|ρ̂a|) < MSE(|ρ̂c|).

Second, the size of N is limited in practice in SAR CCD, which leads to MSE(|ρ̂a|) < MSE(|ρ̂c|)

for more values of |ρ|. Finally, change detection error is not equal to coherence estimation error.

Note from Fig. 2 that the magnitude of the difference in estimation errors is small for large

values of |ρ|, where MSE(|ρ̂a|) > MSE(|ρ̂c|). For other values of |ρ|, especially small values,

i.e., |ρ| = .2, the MSE for |ρ̂a| is more than two tenths smaller than the MSE for |ρ̂c|. The

MSE analysis is valid when the assumption that σf = σg is met. Therefore, a two-stage change

detection approach that applies intensity change detection so that only samples such that σf ≈ σg

are passed to the second stage |ρ̂a|, is considered in detail in the next section.

III. TWO-STAGE CHANGE DETECTION

Coherence and intensity ratio statistics are used separately to detect change at different scales,

but if change detection, regardless of scale, is the goal, these statistics should be combined to

reveal change at all scales. Combining the statistics has the additional benefit of testing first

for equal variance, justifying the assumption of equal variance in order to use a more accurate

coherence estimator; specifically, the second step using the alternative Berger coherence estimator

ρ̂a is proposed. The combined test therefore is expected to provides better change detection than

either statistic alone. The procedure for this proposed test is illustrated in Fig. 3.

Fig. 3: The block diagram of the two-stage change detection scheme

In order to detect change pixels at all scales, we first apply the intensity change detector R̂

that identifies pixel pairs with large variance changes, i.e. σf 6= σg such that good SAR change
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detection image contrast is achieved. The pixel pairs that are identified to have equal or near

equal variances in the first stage are used as an input to the second stage. This leads to most pairs

entering the second stage having nearly equal variance. The second stage test uses the alternative

coherence estimator |ρ̂a| to detect subtle changes. The output of the first and the second stages,

large-scale change and small-scale change, respectively, are combined to form the final change

detection result.

It is shown in Appendix that for arbitrary positive values of σf , σg, |ρ| ≤ 1, and N , the exact

joint probability density function of |ρ̂a| and R̂ is given by

p(|ρ̂a|, R̂) =
(1− |ρ|2)NΓ(2N)

Γ(N)Γ(N − 1)

|ρ̂a|
2(R̂ + 1)2

[
1

R̂ + 1

(
1− 1

R̂ + 1

)
− |ρ̂a|

2

4

]N−2

·

[
|ρ̂a||ρ|+

σ2
gR̂ + σ2

f

(R̂ + 1)σfσg

]−2N
2F1

1

2
, 2N, 1,

2|ρ̂a||ρ|

|ρ̂a||ρ|+
σ2
gR̂+σ2

f

(R̂+1)σfσg


(17)

subject to

|ρ̂a| ≤ [4R̂/(R̂ + 1)2]
1
2 , 0 ≤ R̂ <∞. (18)

Examples of p(|ρ̂a|, R̂) for fixed σf , σg, |ρ|, and N are shown in Fig. 4, (a) with |ρ| = 0.1

and R = 0.1 (σf = 0.3015 and σg = 0.9535), (b) with |ρ| = 0.4 and R = 0.76 (σf = 0.6571 and

σg = 0.7538), and (c) with |ρ| = 0.9 and R = 0.9 (σf = 0.6882 and σg = 0.7255) for N = 3.

From these figures, we see that p(|ρ̂a|, R̂) is only non-zero in the domain where (18) holds.

We test the constraint in (18) by plotting the 2-D histogram of the SAR data shown in Fig. 5

based on R̂ and |ρ̂a| in Fig. 6 (a). Parameters from Fig. 6 (a) are estimated by the maximum

likelihood estimator and the estimated parameters (R̂ = 0.8485 and |ρ̂a| = 0.9899) are used

as the true parameters of p(|ρ̂a|, R̂) in Fig. 6 (b). Notice no data points of the histogram falls

outside of the theoretical boundary of the pdf. With p(|ρ̂a|, R̂), the probability of detection and the

probability of false alarm as a function of detection thresholds in each stage can be numerically

computed.

IV. HEURISTIC APPROACH TO TWO-STAGE CHANGE DETECTION

The focus of this initial study is the development of a heuristic approach to choosing thresholds

due to the integral of (17) being non-trivial to be solved analytically. A detailed study using
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(a) (b) (c)

Fig. 4: Example figures for p(|ρ̂a|, R̂) when (a) R = 0.1 and |ρ| = 0.1, (b) R = 0.75 and

|ρ| = 0.4, and (c) R = 0.9 and |ρ| = 0.9 for N = 3

(17) to explore the inherent behavior of the two-stage change detector will be presented in the

future work.

A. Analysis of SAR

The two-stage change detection can be described as two sequential hypothesis tests involving

data-based estimates of σf and σg in the first stage, and |ρ| in the second stage. We can write
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Fig. 5: 4501× 4501 SAR magnitude image pair, available publicly from the Air Force Research

Laboratory SAR data set described in [18].

TABLE I: Final hypothesis tests of the two-stage change detection

σf ≈ σg σf 6= σg

|ρ| ≈ 1 H0 H1

|ρ| . 1 H1 H1

the hypothesis tests as
H1st

0 : σf ≈ σg H1st
1 : σf 6= σg

H2nd
0 : |ρ| ≈ 1 H2nd

1 : |ρ| . 1.
(19)

The null hypothesis of the first stage test is that the population variances are equal or near

equal and the alternative hypothesis is that those populations have different variances. The null

hypothesis in the second stage test is that |ρ| ≈ 1 and the alternative hypothesis is that |ρ| . 1.

Given the two sets of hypothesis tests, we can form the final hypothesis tests of the two-stage

change detector as shown in Table I. Fig. 7 (b) illustrates the dichotomy of the final hypothesis

tests, H0 (no change) and H1 (change) overlayed on top of the domain R̂ ≤ 3 where p(|ρ̂a|, R̂)

is non-zero.

In the first stage, σf 6= σg constitutes change, more specifically a large-scale change as labeled

in Fig. 3. The sample pairs that are identified to have σf ≈ σg in the first stage are passed to the

second stage. In the second stage, the sample pairs with σf ≈ σg and |ρ| . 1 represents change

(‘Small-scale Change’ in Fig. 3) and σf ≈ σg and |ρ| ≈ 1 represents no change (‘No Change’

in Fig. 3). The small-scale change and the large-scale change are combined to form the final
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(a) (b)

Fig. 6: (a) 2-D histogram of SAR in Fig. 5 in R̂ and |ρ̂a| for R̂ ≤ 3 (b) p(|ρ̂a|, R̂) when the

estimated R and |ρ| over the entire image are used as the true parameter (R = 0.8485 and

|ρ| = 0.9899).

change H1 and the no change output from the second stage is used to form the final no change

H0.

Among the two sets of hypothesis tests H1st and H2nd, one can form four possible outcomes:

H1st
0 + H2nd

0 , H1st
0 + H2nd

1 , H1st
1 + H2nd

0 , and H1st
1 + H2nd

1 . As shown in Fig. 7 (a), we notice

H1st
0 +H2nd

0 indicates the final no change H0 and H1st
0 +H2nd

1 represents a subset of the final

change H1. We also notice both H1st
1 +H2nd

1 and H1st
1 +H2nd

0 represent a subset of H1, however,

we expect that it is unlikely to observe sample pairs under H1st
1 + H2nd

0 . We can identify that

H1st
1 + H2nd

0 is unlikely based on intuition because any large-scale change will affect phase,
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(a) (b)

Fig. 7: Dichotomy of (a) the first and the second stage change detection outputs (b) the final

change H1 and the final no change H0, overlayed on top of the domain R̂ ≤ 3 where p(|ρ̂a|, R̂)

is non-zero.

leading to small-scale changes as well. The unlikely outcome can be seen theoretically via the

constraint of p(|ρ̂a|, R̂) in (18). The constraint implies |ρ̂a| . 2
√
ε for R̂ ≈ ε > 0, where ε

is a small positive infinitesimal quantity. This also implies high |ρ| is unlikely to occur with

R far from unity. Fig. 7 (b) illustrates this fact by showing no data points underneath where

H1st
1 +H2nd

0 holds. As there is an interplay between the first and the second stage tests, in the

next section, we discuss our methods of determining thresholds for each stage of the two-stage

change detection scheme.
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B. Threshold Selection for R̂

0 1 2 3 4
0

0.5

1

1.5

R̂

p
(R̂

;
R
,
|ρ
|,
N

)

R=1, N=5

 

 

|ρ| = 0
|ρ| = 0.7
|ρ| = 0.9

Fig. 8: Probability density function plot of R̂ in (6) shown as a function of |ρ| when H1st
0 is

true and N = 5

Thresholds for a detection problem are traditionally determined assuming the null hypothesis

is true. Similarly, we determine the thresholds Rl,α and Ru,α of the first stage test, assuming

H1st
0 is true, i.e. σf ≈ σg. Note, however, that in practice the true parameter |ρ| is unknown for

selection of thresholds to guarantee an acceptance level of α. Exploring the effects of correlation

parameter |ρ| on the pdf of R̂ under H1st
0 , Fig. 8 shows that using any value of correlation

parameter such that |ρ| 6= 0 only decreases the variance of R̂. That is, if we were to select

thresholds of R̂ under H0 (σf ≈ σg and |ρ| ≈ 1) for arbitrary |ρ|, the test is likely to reject

near equal variance populations from entering the second stage test more often than expected.

Moreover, analysis with real data suggests that choosing threshold values for R̂ under the ρ = 0

assumption for α = 0.01 captures prominent intensity changes between SAR images without

introducing significant false alarms. Thus, Rl,α and Ru,α will be chosen according to (8) so that

samples declared as change in the first stage indicate prominent intensity change, and therefore

immediately declared as H1. The ultimate effect of using R̂ for change detection is that more

samples with σf 6= σg pass to the second stage. We discuss this event in more detail in the next

subsection.
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C. |ρ̂a| with σf 6= σg

The alternative coherence estimator |ρ̂a| is employed under the assumption that underlying

variances of two populations are equal (σf = σg). When the equal variance assumption is met, we

have shown that |ρ̂a| has more desirable change detection properties than |ρ̂c| (see Section II-D);

when |ρ| is low, |ρ̂a| yields significantly less mean squared error than |ρ̂c|, and when |ρ| is high,

|ρ̂a| yields slightly more error than |ρ̂c|, but the magnitude of the difference in estimation error

is negligible. Therefore, it is expected that the more accurate estimation of small values of |ρ|

makes detecting true change more likely, and outweighs the slight increase in false alarms that

corresponds to high values of |ρ|.

The behavior of |ρ̂a| when σf 6= σg can be explained with a direct comparison of distributional

properties. Based on properties of inequality of arithmetic and geometric means, |ρ̂a| ≤ |ρ̂c| with

equality if and only if A11 = A22. In other words, the further R gets from unity, the lower |ρ̂a|

will become compared to |ρ̂c|. This leads to more likely detection of true change when |ρ| is

low, and conversely increasing false alarms when |ρ| is high. However, we know from (18) that

|ρ̂a| ≤ [4R̂/(R̂ + 1)2]
1
2 must hold. This constraint implies high |ρ| is unlikely to occur with R

far from one, which would be the case that would cause false alarms. Therefore, a significant

improvement in change detection is expected to be observed in using |ρ̂a| compared to using

|ρ̂c|, even when the equal variance assumption is not met.

V. EXPERIMENTAL RESULTS

A. Simulation

We performed a simulation with known ground truth to compare the change detection perfor-

mance of |ρ̂a|, |ρ̂c|, and the two-stage framework. For the purpose of this experiment, |ρ| = 0

with a range of values in R was chosen to indicate change, and |ρ| = 0.9 with R = 0.9 to

indicate no change. To restrict the unlikely case, the variance ratio R was fixed in generating

‘no change’ samples, and only varied in producing ‘change’ samples. Note that choosing |ρ| = 1

or R = 1 would result in no variability between samples, which is not realistic in SAR data.

Coherence is affected by factors other than scene change, making |ρ| = 0.9 a reasonably high

coherence value. Results in detecting change corresponding to |ρ| = 0 with a range of values

in R versus |ρ| = 0.9 with R = 0.9 were obtained using 105 independent Monte Carlo trials,
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for sample sizes N = 3 and N = 6. As discussed in Section IV-B, thresholds for the first

stage test are fixed to have a 99% acceptance rate (α = 0.01) under σf = σg and |ρ| = 0 to

avoid significant false alarms occurred in the first stage. Threshold for the second stage test is

empirically determined through receiver operating characteristic (ROC) curve analysis. In the

following analysis, ROC curves are generated varying thresholds of the second stage test after

fixing thresholds for the first stage test according to Section IV-B.
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Fig. 9: Simulated ROC curves comparing the performance of |ρ̂a|, |ρ̂c|, and |ρ̂a| within the two-

stage framework for variance ratios of 0.1, 0.3, 0.7, and 1, with sample sizes of (a) N = 3 and

(b) N = 6.

Figs. 9 (a) and (b) show the ROC curves for the change detection methods with varying

variance ratios R, with sample sizes of N = 3 and N = 6, respectively. The two-stage method

is plotted in black, the classical coherence magnitude estimator |ρ̂c| is denoted as a blue line,

and |ρ̂a| is represented with a red line.

First, we compare the performance of using |ρ̂c| vs. |ρ̂a|. Unlike |ρ̂a|, |ρ̂c| is invariant to σf

and σg, therefore the curves for |ρ̂c| are unaffected by the different values of R. Our empirical

studies indicate that change detection with |ρ̂a| performs better than change detection using |ρ̂c|,

not only when the true underlying variances are equal (R = 1), but also when they are far apart.

As discussed in Subsection IV-C, the performance of change detection using |ρ̂a| increases as
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R gets further away from one, meaning a deviation from underlying assumptions unexpectedly

leads to an improvement in change detection. Recall that change detection error is not the same

as coherence estimation error. Fig. 9 (a) shows that the change detection with |ρ̂a| can achieve

a nearly 37% increase in probability of detection (PD) at a 1% probability of false alarm (PFA)

compared to using |ρ̂c| when R = 0.1.

Next, we compare the change detection performance using the two-stage method against using

only |ρ̂a|. Since the two-stage method uses the intensity change detector in the first stage, and |ρ̂a|

in the second stage, the two-stage method curve converges to |ρ̂a|. The performance improvement

of the two-stage method compared to |ρ̂a| is especially prominent at low PFA and low R. The

additional intensity change detection step allows the two-stage method to detect the regions of

low R that leads to a higher PD at a limited PFA compared to other methods.

A comparison of Figs. 9 (a) and (b) confirms that overall change detection performance

increases with N , and that, as expected with larger sample sizes, the curves tend toward the

optimal operating point. However, we still observe a performance increase using the two-stage

method compared to using |ρ̂a| in Fig. 9 (b) especially at a limited PFA and low R. Our empirical

studies indicate that with R = 0.1 (low R), the number of samples N = 16 yields a negligible

difference (< 10−6) in the area under the ROC curves between the two-stage method and |ρ̂a|.

Similarly, the difference in the area under the curves between the two-stage method and |ρ̂c|

becomes negligible (< 10−6) when N = 16.

We observed the exceptional performance of the two-stage method and |ρ̂a| (≈ 99% PD

at 1% PFA) in Fig. 9 (b), mainly because the simulation setup does not incorporate radar

processing noise and false alarms caused by uninteresting changes (radar shadow, vegetation,

etc). To evaluate the performance of the change detection techniques in a more realistic setting,

the following subsection applies the change detection methods to publicly available AFRL SAR

data as well as SAR data collected in Yuma, AZ, in April 2008 using Boeing’s Ku-band Compact

Radar and a King Air 300 aircraft.

B. Empirical Performance of the Two-stage Test

As a specific example, a smaller 800 × 400 region of Fig. 5, shown in Figs. 10 (a) and (b)

was used to compare the performance of four distinct metrics: the intensity change detector R̂,

the classical coherence estimator |ρ̂c|, the alternative coherence estimator |ρ̂a|, and the two-stage
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(a) Reference SAR (b) Mission SAR (c) Ground-truth

Fig. 10: A zoomed-in 850× 400 portion of Fig. 5
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(b) A zoomed-in view of Fig. 11 (a), near PFA ≤ 0.03

Fig. 11: Change detection performance results on Fig. 10 using R̂, |ρ̂c|, |ρ̂a|, and two-stage test

change detector. The changed and the unchanged scenes were determined by visual inspection

and recorded as a binary mask as shown in Figs. 10 (c). Fig. 11 shows the performance of the

four metrics on Fig. 10 (a) and (b) with N = 5. Thresholds for the first stage test is determined
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the same way as described in Section V-A. Pixels that are declared as change in the first stage

are masked as zero (a black pixel), and later combined with the raw output of |ρ̂a|. Again, ROC

curves in Fig. 11 are generated varying thresholds for the second stage after fixing thresholds

for the first stage test.

By comparing the two-stage test with other competing metrics in Fig. 11 (a), we notice an

improvement with the two-stage method compared to |ρ̂c|. Due to the noisy nature of SAR, we

are primarily interested in low PFA, close to zero. Notice in Fig. 11 (b), in low PFA regions, the

two-stage method performs better than |ρ̂c| and |ρ̂a|.

(a) |ρ̂c| (state of the art) (b) |ρ̂a| (c) Two-stage

Fig. 12: SAR change detection images formed with N = 5, with (c) showing highest overall

contrast.

In practice, raw estimator outputs ranging from 0 to 1 (e.g., images in Fig. 12) are often

called SAR change detection images. As there can be numerous uninteresting changes such as

vegetation and radar shadows, image analysts investigate the raw outputs and manually determine
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(a) |ρ̂c| (state of the art) (b) |ρ̂a| (c) Two-stage

Fig. 13: Corresponding close-up view of a car displacement in a parking lot in Fig. 12, again

with (c) showing the highest contrast

regions of interesting change. In Fig. 12, we show the raw outputs of |ρ̂c|, |ρ̂a|, and the two-stage

method, respectively, prior to thresholding. The raw output of the two-stage method is defined

as the raw output of |ρ̂a| after masking the declared change pixels with the first stage test R̂.

Note that in all three images in Fig. 12, there are considerable false alarms introduced from the

ground material in the parking lot. In the first image generated with |ρ̂c|, the car displacement

changes are indistinguishable from the false alarms. The second image, Fig. 12 (b) with |ρ̂a|

clearly differentiates the car displacement changes, indicated with significantly darker pixels,

compared to the false alarm pixels. The third image in Fig. 12 (c) with the two-stage method

further improves the result from |ρ̂a| by emphasizing the large-scale changes.

Smaller portions of Figs. 12 are shown to further illustrate the difference between the three

methods in the regions of unequal variance in Figs. 13 and nearly equal variance in Figs. 14.

Fig. 13 shows a zoomed in view of a car displacement change in the parking lot from Fig. 12.

Notice the center of the car displacement using |ρ̂c| is hollow, making it difficult to identify

as an object displacement change. However, the result from |ρ̂a| fills in the hollow gap with

darker pixels, indicating low coherence, and the two-stage method further enhances the result
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(a) |ρ̂c| (state of the art) (b) |ρ̂a| (c) Two-stage

Fig. 14: Corresponding close-up view of footprints on a race track in Fig. 12, again with (c)

showing the highest contrast

(a) |ρ̂c| (state of the art) (b) |ρ̂a| (c) Two-stage

Fig. 15: Change detection images formed using Beoing’s SAR data with N = 5

of |ρ̂a|. Fig. 14 indicates tracks. We observe a slight contrast enhancement using |ρ̂a| or the

two-stage method compared to using |ρ̂c|. In regions of both large-scale and small-scale change,

the two-stage method yields the highest contrast among the three techniques.

We validate the robustness of our method on multiple SAR data. The results in Fig. 15 shows
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(a) |ρ̂c| (state of the art) (b) |ρ̂a| (c) Two-stage

Fig. 16: Change detection images formed using AFRL SAR data with N = 5

several footprints that originate on a road. As in the previous example, there are false alarms with

considerable variation. The faint tracks that are partially disconnected in this kind of environment

make the problem of track detection especially difficult. The two-stage result provides the highest

contrast with sharpest foot tracks in Fig. 15.

Fig. 16 shows the results of the three change detection methods on a SAR pair of a parking

lot scene, where detecting object displacements amid numerous false alarms is important. As

uninteresting changes due to the environment are technically a type of change, the coherence

of those pixels are decreased along with the pixels for the changes of interest. However, the

increase in probability of detection caused by underestimation of |ρ̂a| when σf 6= σg overweighs

the slight increase in false alarms due to lower coherence estimates of uninteresting change

and noise. Again, the contrast is emphasized in the two-stage method, making the change even

sharper.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have derived a two-stage test statistic for SAR change detection. This method

is based on the use of the intensity change detector R̂ using a sample variance ratio followed by

the coherent change detector |ρ̂a| that assumes equal population variances. The proposed method

not only has been shown to have a better change detection performance over the current state-

of-the-art change detector |ρ̂c|, but also over either R̂ or |ρ̂a|, alone. The significant improvement

in change detection performance was achieved due to the following reasons.
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1) When R = 1 and |ρ| is low, |ρ̂a| yields significantly less mean squared error than |ρ̂c|, and

when R = 1 and |ρ| is high, |ρ̂a| yields slightly more error than |ρ̂c|, but the magnitude

of the difference in estimation error is negligible, and

2) When R 6= 1, the direct distributional properties assign lower estimated coherence to |ρ̂a|

than |ρ̂c|, therefore if |ρ| is low, true change is more likely to be detected, but if |ρ| is

high, more false alarms are likely to be detected as change. However, the constraint of

p(|ρ̂a|, R̂) shows that such events are unlikely with low R̂.

The improved performance of the two-stage detector compared to other detectors is investi-

gated in terms of ROC curves and visual inspection of the resulting change detection images.

We have derived the theoretical probability density function of the two-stage change detector.

In our initial study, we focused on the development of a heuristic approach to choosing thresholds

and use of empirical analysis to demonstrate potential due to the integral of the joint probability

density function being non-trivial to be solved analytically. A detailed study using the probability

density function to explore the inherent behavior of the detector will be included in the future

work.

APPENDIX

DERIVATION OF p(|ρ̂a|, R̂)

The joint density of the magnitude of the estimator |ρ̂a| and the sample variance ratio R̂

can be computed by extending the method of [7] as follows. First, two auxiliary variables

v = A11 + A22 and w = A22 are introduced. Note that A11 = v − w, A22 = w, Re(A12) =

Re(ρ̂a)v/2, Im(A12) = Im(ρ̂a)v/2, and the determinant of the Jacobian of the transformation

(A11, A22,Re(A12), Im(A12)) → (Re(ρ̂a), Im(ρ̂a), v, w) is |J1| ≡
∣∣∣∂(A11,A22,Re(A12),Im(A12)

∂(Re(ρ̂a),Im(ρ̂a),v,w)

∣∣∣ =

(v/2)2. It follows from (4) that

p(Re(ρ̂a), Im(ρ̂a), v, w) = |J1|p(A11, A22,Re(A12), Im(A12))

= |J1|p (v − w,w,Re(ρ̂a)v/2, Im(ρ̂a)v/2)

= (v/2)2K1

[
(v − w)w − (|ρ̂a|v/2)2

]N−2
· exp

[
−vγ11 + w(γ11 − γ22)− vRe(γ12 ¯̂ρa)

]
(20)

where

K1 =
[
πΓ(N)Γ(N − 1)σ2N

f σ2N
g (1− |ρ|2)N

]−1
, (21)
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γjk is the (j, k)th element of Σ−1, and the density vanishes outside the region 0 ≤ w ≤ v <∞,

|ρ̂a| ≤ 2[(w/v)− (w/v)2]
1
2 .

Next, consider the second change of variables (Re(ρ̂a), Im(ρ̂a), v, w)→ (Re(ρ̂a), Im(ρ̂a), R̂, w)

where R̂ = v/w − 1. The Jacobian of this transformation is |J2| ≡
∣∣∣ ∂v
∂R̂

∣∣∣ = w, and the density

expressed in the new variables is

p(Re(ρ̂a), Im(ρ̂a), R̂, w) = |J2| p(Re(ρ̂a), Im(ρ̂a), v, w)

= |J2| p(Re(ρ̂a), Im(ρ̂a), w(R̂ + 1), w)

= K1w
2N−1

(
R̂ + 1

2

)2 [
R̂− |ρ̂a|2

(R̂ + 1)2

4

]N−2
exp(−wφ)

(22)(
|ρ̂a| ≤ [4R̂/(R̂ + 1)2]

1
2 , 0 ≤ R̂ <∞, 0 ≤ w <∞

)
where

φ =
[
(R̂ + 1)γ11 + (γ22 − γ11) + (R̂ + 1)Re(γ12 ¯̂ρa)

]
. (23)

Using the integral solved in [2],∫ ∞
0

ωn−1 exp[−ωµ] dω =
1

µn
Γ(n), (24)

we next obtain p(Re(ρ̂a), Im(ρ̂a), R̂) by integrating p(Re(ρ̂a), Im(ρ̂a), R̂, w) over w,

p(Re(ρ̂a), Im(ρ̂a), R̂) =

∫ ∞
0

p(Re(ρ̂a), Im(ρ̂a), R̂, w) dw

= K1

(
R̂ + 1

2

)2 [
R̂− |ρ̂a|2

(R̂ + 1)2

4

]N−2
φ−2NΓ(2N)

= K1
1

4(R̂ + 1)2

[
1

R̂ + 1

(
1− 1

R̂ + 1

)
− |ρ̂a|

2

4

]N−2
·
[
γ11 +

γ22 − γ11

R̂ + 1
+ Re(γ12 ¯̂ρa)

]−2N
Γ(2N) (25)(

|ρ̂a| ≤ [4R̂/(R̂ + 1)2]
1
2 , 0 ≤ R̂ <∞

)
The third change of variables (Re(ρ̂a), Im(ρ̂a), R̂) → (|ρ̂a|, θρ̂a , R̂) facilitates transformation

of (25) to polar coordinates. Here, Re(ρ̂a) = |ρ̂a| cos(θρ̂a), Im(ρ̂a) = |ρ̂a| sin(θρ̂a), and the deter-

minant of the Jacobian matrix is |J3| ≡
∣∣∣∂(Re(ρ̂a),Im(ρ̂a))

∂(|ρ̂a|,θρ̂a )

∣∣∣ = |ρ̂a|. Using the explicit expressions
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for γ11, γ22, and γ12, the density in the new coordinates can be represented as

p(|ρ̂a|, θρ̂a , R̂) = |J3|p(Re(ρ̂a), Im(ρ̂a), R̂)

= |J3|p(|ρ̂a| cos(θρ̂a), |ρ̂a| sin(θρ̂a), R̂)

=
(1− |ρ|2)NΓ(2N)

πΓ(N)Γ(N − 1)

|ρ̂a|
4(R̂ + 1)2

[
1

R̂ + 1

(
1− 1

R̂ + 1

)
− |ρ̂a|

2

4

]N−2

·

[
σg
σf

+
1

(R̂ + 1)

σ2
f − σ2

g

σfσg
− |ρ̂a||ρ| cos(θρ̂a − θρ)

]−2N
(26)(

|ρ̂a| ≤ [4R̂/(R̂ + 1)2]
1
2 , 0 ≤ R̂ <∞,−π ≤ θρ̂a ≤ π

)
.

As the final step, we integrate p(|ρ̂a|, θρ̂a , R̂) with respect to θρ̂a , following the analytical

expression, ∫ π

−π
[p+ q cos(x)]−2ndx = 2π(p− q)−2n2F1

(
1

2
, 2n, 1,

2q

q − p

)
(p > q). (27)

In our case,

p =
σg
σf

+
1

(R̂ + 1)

σ2
f − σ2

g

σfσg
=

σ2
gR̂ + σ2

f

(R̂ + 1)σfσg

q = −|ρ̂a||ρ|, (28)

therefore, p > q holds. This leads to the joint density function of |ρ̂a| and R̂,

p(|ρ̂a|, R̂) =
(1− |ρ|2)NΓ(2N)

Γ(N)Γ(N − 1)

|ρ̂a|
2(R̂ + 1)2

[
1

R̂ + 1

(
1− 1

R̂ + 1

)
− |ρ̂a|

2

4

]N−2

·

[
|ρ̂a||ρ|+

σ2
gR̂ + σ2

f

(R̂ + 1)σfσg

]−2N
2F1

1

2
, 2N, 1,

2|ρ̂a||ρ|

|ρ̂a||ρ|+
σ2
gR̂+σ2

f

(R̂+1)σfσg


(29)

subject to

|ρ̂a| ≤ [4R̂/(R̂ + 1)2]
1
2 , 0 ≤ R̂ <∞. (30)
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