230 research outputs found

    The Role of Oxidation Compounds in Biofilm Growth on Polyethylene Geomembrane Barriers Used in Landfill

    Get PDF
    In a model study, polyethylene was preoxidized and incubated for a period of 7 months at 40°C in two different municipal solid waste leachates. During the postexperimental analyses, specific attention was paid to the carbonyl species and carboxylic acid depletion during the environmental exposure because it is well known that carboxylic acids are believed to be a potential substrate for the development of microorganisms. The results showed that the carbonyl as well as the carboxylic acid depletion observed follows first-order kinetics. The biofilm formation was characterized using a suite of analytical techniques, and its formation was compared with the carboxylic acid and carbonyl depletion profil

    Polyethylene loss of ductility during oxidation: Effect of initial molar mass distribution

    Get PDF
    This paper reports a study of thermal oxidation induced embrittlement in several polyethylene grades differing mainly by the broadness of the molar mass distribution (ranging for lower than 3 to more than 30). Thermal oxidation was monitored at macromolecular scale (Gel Permeation Chromatography, Differential Scanning Calorimetry) and macroscopic scale (tensile tests). As expected, the samples undergo predominant chain scission and plastic deformation is suppressed below a critical molar mass value (M’C). Even though this latter was previously reported to be independent of the initial weight average molar mass, it is shown here that it depends on initial polydispersity index. Samples were also shown to undergo chemicrystallization, i.e. that segments released by chain scissions migrate into the crystalline phase with a yield increasing with initial polydispersity index. Finally, the main novelty of this work is to evidence that the previously proposed end-of-life criteria at macromolecular level linked to loss of ductility (critical molar mass, crystallization yield) depend on the initial polydispersity index

    Exophiala dermatitidis Revealing Cystic Fibrosis in Adult Patients with Chronic Pulmonary Disease

    Get PDF
    Cystic fibrosis (CF) is a genetic inherited disease due to mutations in the gene cystic fibrosis transmembrane conductance regulator (CFTR). Because of the huge diversity of CFTR mutations, the CF phenotypes are highly heterogeneous, varying from typical to mild form of CF, also called atypical CF. These atypical features are more frequently diagnosed at adolescence or adulthood, and among clinical signs and symptoms leading to suspect a mild form of CF, colonization or infection of the respiratory tract due to well-known CF pathogens should be a warning signal. Exophiala dermatitidis is a melanized dimorphic fungus commonly detected in respiratory specimens from CF patients, but only very rarely from respiratory specimens from non-CF patients. We described here two cases of chronic colonization of the airways by E. dermatitidis, with recurrent pneumonia and hemoptysis in one patient, which led clinicians to diagnose mild forms of CF in these elderly patients who were 68- and 87-year-old. These cases of late CF diagnosis suggest that airway colonization or respiratory infections due to E. dermatitidis in patients with bronchiectasis should led to search for a mild form of CF, regardless of the age and associated symptoms. On a broader level, in patients with chronic respiratory disease and recurrent pulmonary infections, an allergic bronchopulmonary mycosis or an airway colonization by CF-related fungi like E. dermatitidis or some Aspergillus, Scedosporium or Rasamsonia species, should be considered as potential markers of atypical CF and should led clinicians to conduct investigations for CF diagnosis

    The Pkn22 Ser/Thr kinase in Nostoc PCC 7120: role of FurA and NtcA regulators and transcript profiling under nitrogen starvation and oxidative stress

    Get PDF
    International audienceBackground: The filamentous cyanobacterium Nostoc sp. strain PCC 7120 can fix N2 when combined nitrogen is not available. Furthermore, it has to cope with reactive oxygen species generated as byproducts of photosynthesis and respiration. We have previously demonstrated the synthesis of Ser/Thr kinase Pkn22 as an important survival response of Nostoc to oxidative damage. In this study we wished to investigate the possible involvement of this kinase in signalling peroxide stress and nitrogen deprivation. Results: Quantitative RT-PCR experiments revealed that the pkn22 gene is induced in response to peroxide stress and to combined nitrogen starvation. Electrophoretic motility assays indicated that the pkn22 promoter is recognized by the global transcriptional regulators FurA and NtcA. Transcriptomic analysis comparing a pkn22-insertion mutant and the wild type strain indicated that this kinase regulates genes involved in important cellular functions such as photosynthesis, carbon metabolism and iron acquisition. Since metabolic changes may lead to oxidative stress, we investigated whether this is the case with nitrogen starvation. Our results rather invalidate this hypothesis thereby suggesting that the function of Pkn22 under nitrogen starvation is independent of its role in response to peroxide stress. Conclusions: Our analyses have permitted a more complete functional description of Ser/Thr kinase in Nostoc. We have decrypted the transcriptional regulation of the pkn22 gene, and analysed the whole set of genes under the control of this kinase in response to the two environmental changes often encountered by cyanobacteria in their natural habitat: oxidative stress and nitrogen deprivation

    Higher-precision radial velocity measurements with the SOPHIE spectrograph using octagonal-section fibers

    Full text link
    High-precision spectrographs play a key role in exoplanet searches using the radial velocity technique. But at the accuracy level of 1 m.s-1, required for super-Earth characterization, stability of fiber-fed spectrograph performance is crucial considering variable observing conditions such as seeing, guiding and centering errors and, telescope vignetting. In fiber-fed spectrographs such as HARPS or SOPHIE, the fiber link scrambling properties are one of the main issues. Both the stability of the fiber near-field uniformity at the spectrograph entrance and of the far-field illumination on the echelle grating (pupil) are critical for high-precision radial velocity measurements due to the spectrograph geometrical field and aperture aberrations. We conducted tests on the SOPHIE spectrograph at the 1.93-m OHP telescope to measure the instrument sensitivity to the fiber link light feeding conditions: star decentering, telescope vignetting by the dome,and defocussing. To significantly improve on current precision, we designed a fiber link modification considering the spectrograph operational constraints. We have developed a new link which includes a piece of octagonal-section fiber, having good scrambling properties, lying inside the former circular-section fiber, and we tested the concept on a bench to characterize near-field and far-field scrambling properties. This modification has been implemented in spring 2011 on the SOPHIE spectrograph fibers and tested for the first time directly on the sky to demonstrate the gain compared to the previous fiber link. Scientific validation for exoplanet search and characterization has been conducted by observing standard stars.Comment: 12 pages, 9 figures, Proceedings of SPIE 201

    Pressure tolerance of Artemia cysts compressed in water medium

    Get PDF
    The high pressure tolerance of cysts of Artemia salina was investigated up to several GPa in water. No survival was observed after exposure to 1.0 GPa for 15 min. After exposure to 2.0 GPa for the same time duration, the hatching rate had recovered to 33%, but decreased to 8% following compression at 7.5 GPa. This contrasts with results using Fluorinertℱ as the pressure-transmitting medium where 80–88% recovery was observed. The lower survival rate in water is accompanied by swelling of the eggs, indicating that liquid H2O close to the ice-VI crystallization pressure penetrated inside the eggs. This pressure exceeds the stability limit for proteins and other key biomolecules components within the embryos that could not be resuscitated. Rehydration takes several minutes and so was not completed for all samples compressed to higher pressures, prior to ice-VI formation, resulting in renewed survival. However H2O penetration inside the shell resulted in increased mortalit

    Advanced cell-based modeling of the royal disease: characterization of the mutated F9 mRNA

    Get PDF
    Essentials The Royal disease (RD) is a form of hemophilia B predicted to be caused by a splicing mutation. We generated an iPSC-based model of the disease allowing mechanistic studies at the RNA level. F9 mRNA analysis in iPSC-derived hepatocyte-like cells showed the predicted abnormal splicing. Mutated F9 mRNA level was very low but we also found traces of wild type transcripts. SUMMARY: Background The royal disease is a form of hemophilia B (HB) that affected many descendants of Queen Victoria in the 19th and 20th centuries. It was found to be caused by the mutation F9 c.278-3A>G. Objective To generate a physiological cell model of the disease and to study F9 expression at the RNA level. Methods Using fibroblasts from skin biopsies of a previously identified hemophilic patient bearing the F9 c.278-3A>G mutation and his mother, we generated induced pluripotent stem cells (iPSCs). Both the patient's and mother's iPSCs were differentiated into hepatocyte-like cells (HLCs) and their F9 mRNA was analyzed using next-generation sequencing (NGS). Results and Conclusion We demonstrated the previously predicted aberrant splicing of the F9 transcript as a result of an intronic nucleotide substitution leading to a frameshift and the generation of a premature termination codon (PTC). The F9 mRNA level in the patient's HLCs was significantly reduced compared with that of his mother, suggesting that mutated transcripts undergo nonsense-mediated decay (NMD), a cellular mechanism that degrades PTC-containing mRNAs. We also detected small proportions of correctly spliced transcripts in the patient's HLCs, which, combined with genetic variability in splicing and NMD machineries, could partially explain some clinical variability among affected members of the European royal families who had lifespans above the average. This work allowed the demonstration of the pathologic consequences of an intronic mutation in the F9 gene and represents the first bona fide cellular model of HB allowing the study of rare mutations at the RNA level

    The SOPHIE search for northern extrasolar planets XIV. A temperate (Teq ~ 300 K) super-earth around the nearby star Gliese 411

    Get PDF
    Periodic radial velocity variations in the nearby M-dwarf star Gl 411 are reported, based on measurements with the SOPHIE spectrograph. Current data do not allow us to distinguish between a 12.95-day period and its one-day alias at 1.08 days, but favour the former slightly. The velocity variation has an amplitude of 1.6 m s−1, making this the lowest-amplitude signal detected with SOPHIE up to now. We have performed a detailed analysis of the significance of the signal and its origin, including extensive simulations with both uncorrelated and correlated noise, representing the signal induced by stellar activity. The signal is significantly detected, and the results from all tests point to its planetary origin. Additionally, the presence of an additional acceleration in the velocity time series is suggested by the current data. On the other hand, a previously reported signal with a period of 9.9 days, detected in HIRES velocities of this star, is not recovered in the SOPHIE data. An independent analysis of the HIRES dataset also fails to unveil the 9.9-day signal. If the 12.95-day period is the real one, the amplitude of the signal detected with SOPHIE implies the presence of a planet, called Gl 411 b, with a minimum mass of around three Earth masses, orbiting its star at a distance of 0.079 AU. The planet receives about 3.5 times the insolation received by Earth, which implies an equilibrium temperature between 256 and 350 K, and makes it too hot to be in the habitable zone. At a distance of only 2.5 pc, Gl 411 b, is the third closest low-mass planet detected to date. Its proximity to Earth will permit probing its atmosphere with a combination of high-contrast imaging and high-dispersion spectroscopy in the next decade
    • 

    corecore