30,732 research outputs found

    Systematic derivation of a surface polarization model for planar perovskite solar cells

    Get PDF
    Increasing evidence suggests that the presence of mobile ions in perovskite solar cells can cause a current-voltage curve hysteresis. Steady state and transient current-voltage characteristics of a planar metal halide CH3_3NH3_3PbI3_3 perovskite solar cell are analysed with a drift-diffusion model that accounts for both charge transport and ion vacancy motion. The high ion vacancy density within the perovskite layer gives rise to narrow Debye layers (typical width ∟\sim2nm), adjacent to the interfaces with the transport layers, over which large drops in the electric potential occur and in which significant charge is stored. Large disparities between (I) the width of the Debye layers and that of the perovskite layer (∟\sim600nm) and (II) the ion vacancy density and the charge carrier densities motivate an asymptotic approach to solving the model, while the stiffness of the equations renders standard solution methods unreliable. We derive a simplified surface polarisation model in which the slow ion dynamic are replaced by interfacial (nonlinear) capacitances at the perovskite interfaces. Favourable comparison is made between the results of the asymptotic approach and numerical solutions for a realistic cell over a wide range of operating conditions of practical interest.Comment: 32 pages, 7 figure

    The Effect of Gelling Agents and Solvents on PMMA Surfaces: A Comparative Study

    Get PDF
    Gels were introduced to the field of conservation to optimize cleaning treatments through their assumed ability to control solvent diffusion and limit mechanical stresses. We are currently undertaking a systematic study into the impact of solvent gel combinations to increase our understanding of their effect on poly(methyl methacrylate) (PMMA) artefacts. The isotropic, amorphous nature of PMMA renders it vulnerable to low molecular weight liquid penetration (Shashoua 2008). Their diffusion into PMMA results in changes to mechanical behaviour; a localized reduction in yield strength renders the material highly susceptible to scratches, crazes and brittle fracture (Michler 1989: 378). Based on the hypothesis that solvent-based gels permit solvent penetration into the PMMA surface, while minimizing the risk of material dissolution (Khandekar 2004), this study assesses the damage potential of the individual materials employed in gel systems. Experimental work examined the effect, safety and time-dependent action of solvents, hydrogel matrices and solvent-gel mixtures

    The Use of Solvent-Gel Systems for the Cleaning of PMMA

    Get PDF
    This paper discusses the use of solvent-gel systems for the cleaning of poly (methyl methacrylate) (PMMA) surfaces. Aqueous polymer gel systems have been introduced to the conservation field with a particular focus on paintings, painted surfaces of wooden artefacts and stone. However, their application on plastics is very recent. Statistically designed experiments aimed to assess the efficiency and damage potential of materials constituting selected solvent-gel cleaning systems. The effect of the free solvents (deionized water, ethanol, isopropanol and petroleum ether), the hydrogel carriers (Agar, Pemulen™ TR-2, Carbopol® EZ 2-Ethomeen® C-25 and 80% hydrolysed PVAc-borax) and their combinations after 5 and 60 minutes of application time on PMMA surfaces, were evaluated through qualitative visual microscopic observation and SEM imaging, and quantitative weight change measurements. Visual observations revealed that the action of solvents (i.e. ethanol and isopropanol) was moderated by gellation (i.e. Agar), while other gel systems (i.e. Pemulen) were unsatisfactory. Results of gravimetric studies showed that most solvent-gels resulted in inconsistencies and large weight changes

    Design and Manufacture of Wood Blades for Windtunnel Fans

    Get PDF
    Many windtunnels use wooden fan blades, however, because of their usual long life (often in excess of 50 years) wooden blades typically do not have to be replaced very often; therefore, the expertise for designing and building wooden windtunnel fan blades is being lost. The purpose of this report is to document the design and build process so that when replacement blades are eventually required some of the critical information required is available. Information useful to fan-blade designers, fabricators, inspectors, and windtunnel operations personnel is included. Fixed pitch and variable pitch fans as well as fans which range in size from a few feet in diameter to over 40 ft. in diameter are described. Woods, adhesives, and coverings are discussed

    The Management of Classical Hodgkin's Lymphoma: Past, Present, and Future

    Get PDF
    The management of classical Hodgkin's lymphoma (CHL) is a success story of modern multi-agent haemato-oncology. Prior to the middle of the twentieth century CHL was fatal in the majority of cases. Introduction of single agent radiotherapy (RT) demonstrated for the first time that these patients could be cured. Developments in chemotherapy including the mechlorethamine, vincristine, procarbazine and prednisolone (MOPP) and Adriamycin, bleomycin, vinblastine and dacarbazine (ABVD) regimens have resulted in cure rates of over 80%. Even in relapse, CHL patients can be salvaged with high dose chemotherapy and autologous haematopoietic stem cell transplantation (ASCT). Challenges remain, however, in finding new strategies to manage the small number of patients who continue to relapse or progress. In addition, the young age of many Hodgkin's patients forces difficult decisions in balancing the benefit of early disease control against the survival disadvantage of late toxicity. In this article we aim to summarise past trials, define the current standard of care and appraise future developments in the management of CHL

    Growth and form of the mound in Gale Crater, Mars: Slope wind enhanced erosion and transport

    Get PDF
    Ancient sediments provide archives of climate and habitability on Mars. Gale Crater, the landing site for the Mars Science Laboratory (MSL), hosts a 5-km-high sedimentary mound (Mount Sharp/Aeolis Mons). Hypotheses for mound formation include evaporitic, lacustrine, fluviodeltaic, and aeolian processes, but the origin and original extent of Gale’s mound is unknown. Here we show new measurements of sedimentary strata within the mound that indicate ∼3° outward dips oriented radially away from the mound center, inconsistent with the first three hypotheses. Moreover, although mounds are widely considered to be erosional remnants of a once crater-filling unit, we find that the Gale mound’s current form is close to its maximal extent. Instead we propose that the mound’s structure, stratigraphy, and current shape can be explained by growth in place near the center of the crater mediated by wind-topography feedbacks. Our model shows how sediment can initially accrete near the crater center far from crater-wall katabatic winds, until the increasing relief of the resulting mound generates mound-flank slope winds strong enough to erode the mound. The slope wind enhanced erosion and transport (SWEET) hypothesis indicates mound formation dominantly by aeolian deposition with limited organic carbon preservation potential, and a relatively limited role for lacustrine and fluvial activity. Morphodynamic feedbacks between wind and topography are widely applicable to a range of sedimentary and ice mounds across the Martian surface, and possibly other planets

    Reaction Diffusion and Ballistic Annihilation Near an Impenetrable Boundary

    Full text link
    The behavior of the single-species reaction process A+A→OA+A\to O is examined near an impenetrable boundary, representing the flask containing the reactants. Two types of dynamics are considered for the reactants: diffusive and ballistic propagation. It is shown that the effect of the boundary is quite different in both cases: diffusion-reaction leads to a density excess, whereas ballistic annihilation exhibits a density deficit, and in both cases the effect is not localized at the boundary but penetrates into the system. The field-theoretic renormalization group is used to obtain the universal properties of the density excess in two dimensions and below for the reaction-diffusion system. In one dimension the excess decays with the same exponent as the bulk and is found by an exact solution. In two dimensions the excess is marginally less relevant than the bulk decay and the density profile is again found exactly for late times from the RG-improved field theory. The results obtained for the diffusive case are relevant for Mg2+^{2+} or Cd2+^{2+} doping in the TMMC crystal's exciton coalescence process and also imply a surprising result for the dynamic magnetization in the critical one-dimensional Ising model with a fixed spin. For the case of ballistic reactants, a model is introduced and solved exactly in one dimension. The density-deficit profile is obtained, as is the density of left and right moving reactants near the impenetrable boundary.Comment: to appear in J. Phys.
    • …
    corecore