990 research outputs found

    The effect of macrofaunal disturbance on Cerastoderma edule post-larvae

    Get PDF
    Populations of the Common European cockle (Cerastoderma edule) often have highly patchy distributions and variable recruitment success. One of the proposed reasons is that high densities of filter feeders and/or bioturbators are thought to reduce the success of larval settlement and post-settlement survival, but the direct causal processes driving these observations are not clearly identified and validated. Through combined field and laboratory experiments, we test the hypothesis that macrofauna cause decreases in post-larval density through feeding and movement activities. The effect of excluding the bioturbating lugworm Arenicola marina and filter-feeding adult cockles on post-larval cockle densities was estimated in separate field experiments at two locations from the time of initial larval settlement in May 2012 to late summer August 2012. Lugworm exclusion led to a significant increase in cockle post-larval densities whereas the opposite was true for adult cockles, where exclusion led to a reduction in C. edule post-larval density. Although clear effects were observed in the field, experiments conducted in the laboratory failed to detect changes in mortality or byssus drifting of post-larvae as a consequence of macrofaunal activity. This study demonstrates that the presence of macrofauna can have both positive and negative effects on post-settlement density of C. edule post-larvae. Thus the density, distribution and identity of macrofauna have significant effects on the density and spatial distribution of C. edule post-larvae during the post-settlement period. These observations have implications for conservation and fishery management of this species

    The floor in the interplanetary magnetic field: Estimation on the basis of relative duration of ICME observations in solar wind during 1976-2000

    Full text link
    To measure the floor in interplanetary magnetic field and estimate the time- invariant open magnetic flux of Sun, it is necessary to know a part of magnetic field of Sun carried away by CMEs. In contrast with previous papers, we did not use global solar parameters: we identified different large-scale types of solar wind for 1976-2000 interval, obtained a fraction of interplanetary CMEs (ICMEs) and calculated magnitude of interplanetary magnetic field B averaged over 2 Carrington rotations. The floor of magnetic field is estimated as B value at solar cycle minimum when the ICMEs were not observed and it was calculated to be 4,65 \pm 6,0 nT. Obtained value is in a good agreement with previous results.Comment: 10 pages, 2 figures, submitted in GR

    Winter distribution of Calanus finmarchicus in the Northeast Atlantic

    Get PDF
    Data from plankton sampling and Optical Plankton Counter deployments during six cruises between December of 1994 and 1999 have been used to derive a composite three-dimensional distribution of the abundance of Calanus finmarchicus during winter (December-January) in the Norwegian Sea and Northeast Atlantic. There are two centres of abundance, one in the eastern Norwegian Sea and Faroe-Shetland Channel, associated with the interface between Norwegian Sea Deep Water and Intermediate Water layers, and another in the Irminger Sea southwest of Iceland in association with Labrador Sea Water. In the open Northeast Atlantic, the concentration of wintering animals is around 30% of that in the Norwegian Sea and the vertical distribution ismore diffuse and on average deeper. Modelling studies have shown that the overwinter distribution and transport are key factors determining the spatial persistence of C. finmarchicus but, apart from the data presented here, there is little knowledge of these large-scale properties

    Climate fluctuations and the spring invasion of the North Sea by Calanus finmarchicus

    Get PDF
    The population of Calanus finmarchicus in the North Sea is replenished each spring by invasion from an overwintering stock located beyond the shelf edge. A combincation of field observations, statistical analysis of Continuous Plankton Recorder (CPR) data, and particle tracking model simulations, was used to investigate the processes involved in the cross-shelf invasion. The results showed that the main source of overwintering animals entering the North Sea in the spring is at depths of greater than 600m in the Faroe Shetland Channel, where concentrations of up to 620m -3 are found in association with the overflow of Norwegian Sea Deep Water (NSDW) across the Iceland Scotland Ridge. The input of this water mass to the Faroe Shetland Channel, and hence the supply of overwintering C. finmarchicus, has declined since the late 1960s due to changes in convective processes in the Greenland Sea. Beginning in February, animals start to emerge from the overwintering state and migrate to the surface waters, where their transport into the North Sea is mainly determined by the incidence of north-westerly winds that have declined since the 1960s. Together, these two factors explain a high proportion of the 30-year trends in spring abundance in the North Sea as measured by the CPR survey. Both the regional winds and the NSDW overflow are connected to the North Atlantic Oscillation Index (NAO), which is an atmospheric climate index, but with different time scales of response. Thus, interannual fluctuations in the NAO can cause immediate changes in the incidence of north-westerly winds without leading to corresponding changes in C. finmarchicus abundance in the North Sea, because the NSDW overflow responds over longer (decadal) time scales

    Genetic architecture of dispersal behaviour in the post-harvest pest and model organism Tribolium castaneum

    Get PDF
    Dispersal behaviour is an important aspect of the life-history of animals. However, the genetic architecture of dispersal-related traits is often obscure or unknown, even in well studied species. Tribolium castaneum is a globally significant post-harvest pest and established model organism, yet studies of its dispersal have shown ambiguous results and the genetic basis of this behaviour remains unresolved. We combine experimental evolution and agent-based modelling to investigate the number of loci underlying dispersal in T. castaneum, and whether the trait is sex-linked. Our findings demonstrate rapid evolution of dispersal behaviour under selection. We find no evidence of sex-biases in the dispersal behaviour of the offspring of crosses, supporting an autosomal genetic basis of the trait. Moreover, simulated data approximates experimental data under simulated scenarios where the dispersal trait is controlled by one or few loci, but not many loci. Levels of dispersal in experimentally inbred lines, compared with simulations, indicate that a single locus model is not well supported. Taken together, these lines of evidence support an oligogenic architecture underlying dispersal in Tribolium castaneum. These results have implications for applied pest management and for our understanding of the evolution of dispersal in the coleoptera, the world’s most species-rich order

    Self-Consistent Quasi-Particle RPA for the Description of Superfluid Fermi Systems

    Get PDF
    Self-Consistent Quasi-Particle RPA (SCQRPA) is for the first time applied to a more level pairing case. Various filling situations and values for the coupling constant are considered. Very encouraging results in comparison with the exact solution of the model are obtained. The nature of the low lying mode in SCQRPA is identified. The strong reduction of the number fluctuation in SCQRPA vs BCS is pointed out. The transition from superfluidity to the normal fluid case is carefully investigated.Comment: 23 pages, 18 figures and 1 table, submitted to Phys. Rev.

    Changes in social groups across reintroductions and effects on post-release survival

    Get PDF
    Reintroductions, essential to many conservation programmes, disrupt both abiotic and social environments. Despite growing recognition that social connections in animals might alter survival (e.g. social transmission of foraging skills, or transmission of disease), there has thus far been little focus on the consequences of social disruption during reintroductions. Here we investigate if moving familiar social groups may help a threatened species to adjust to its new environment and increase post-release survival. For a reintroduction of 40 juvenile hihi Notiomystis cincta (a threatened New Zealand passerine), we observed social groups before and after translocation to a new site and used social network analysis to study three levels of social change: overall group structure, network associations and individual sociality. We also tested alternate translocation strategies where birds were kept temporarily in aviaries in either a familiar group, or where their prior association was mixed. Although social structure remained similar among juveniles that remained at the source site, we detected significant changes in translocated birds at both the group- and individual- level post-release. However, our holding treatments did not affect these social bonds so we remain unable to maintain or manipulate social groups during translocation. Crucially, there was a small tendency for translocated juveniles that gained more associates during re-assortment of social groups to be more likely to survive their first year post-release. We suggest that prior sociality may not be important during translocations, but rather individuals that are most able to adapt and form associations at a new site are most likely to be the surviving founders of reintroduced populations.Peer reviewe

    Palaeontology, the biogeohistory of Victoria

    Full text link
    The broad-scale distribution of fossils within Victoria is controlled by general global patterns in the biological evolution of life on Earth, the local development and environmental evolution of habitats, and the occurrence of geological processes conducive to the preservation of fossil floras and faunas. Early Palaeozoic fossils are mostly marine in origin because of the predominance of marine sedimentary rocks in Victoria and because life on land was not significant during most of this time interval. Middle Palaeozoic sequences have both terrestrial and marine fossil records. Within Victoria, marine rocks are only very minor components of strata deposited during the late Palaeozoic, so that few marine fossils are known from this time period. A similar situation existed during most of the Mesozoic except towards the end of this era when marine conditions began to prevail in the Bass Strait region. During long intervals in the Cainozoic, large areas of Victoria were flooded by shallow-marine seas, particularly in the southern basins of Bass Strait, as well as in the northwest of the State (Murray Basin). Cainozoic sediments contain an extraordinary range of animal and plant fossils. During the Quaternary, the landscape of Victoria became, and continues to be, dominated by continental environments including, at times, extensive freshwater lake systems. Fossil floras and faunas from sediments deposited in these lake systems and from other continental sediments, as well as from Quaternary sediments deposited in marginal marine environments, collectively record a history of rapid fluctuations in climate and sea level.<br /
    corecore