846 research outputs found

    The Covid-19 crisis as a career shock: Implications for careers and vocational behavior

    Get PDF
    The covid-19 pandemic is a career shock for many people across the globe. In this article, we reflect on how insights from the literature on career shocks can help us understand the career consequences of the pandemic and offer suggestions for future research in this area. In particular, we offer three “key lessons”. The first lesson is that the implications of Covid-19 reflect the dynamic interplay between individual and contextual factors. Here, we argue that although the pandemic was difficult to predict and control, research shows that certain psychological resources – such as career competencies and resilience – could make this career shock more manageable. The second lesson is that the pandemic may have differential implications over time, as suggested by research that has shown the consequences of career shocks to differ between short-term vs. long-term time horizons, and across life- and career stages. The third lesson is that, even though the pandemic is clearly a negatively valenced shock for most people, further into the future it may allow for more positive outcomes. This lesson builds on research showing how negative career shocks have long-term positive consequences for some people. We hope that these insights will inspire both scholars and practitioners to study and understand the work and career implications of Covid-19 as a career shock, as well as to support people in dealing with its consequences

    Exact Study of the Effect of Level Statistics in Ultrasmall Superconducting Grains

    Get PDF
    The reduced BCS model that is commonly used for ultrasmall superconducting grains has an exact solution worked out long ago by Richardson in the context of nuclear physics. We use it to check the quality of previous treatments of this model, and to investigate the effect of level statistics on pairing correlations. We find that the ground state energies are on average somewhat lower for systems with non-uniform than uniform level spacings, but both have an equally smooth crossover from the bulk to the few-electron regime. In the latter, statistical fluctuations in ground state energies strongly depend on the grain's electron number parity.Comment: 4 pages, 3 eps figs, RevTe

    A geodata warehouse: using denormalisation techniques as a tool for delivering spatially enabled integrated geological information to geologists

    Get PDF
    New requirements to understand geological properties in three dimensions have led to the development of PropBase, a data structure and delivery tools to deliver this. At the BGS, relational database management systems (RDBMS) has facilitated effective data management using normalised subject-based database designs with business rules in a centralised, vocabulary controlled, architecture. These have delivered effective data storage in a secure environment. However, isolated subject-oriented designs prevented efficient cross-domain querying of datasets. Additionally, the tools provided often did not enable effective data discovery as they struggled to resolve the complex underlying normalised structures providing poor data access speeds. Users developed bespoke access tools to structures they didn’t fully understand sometimes delivering them incorrect results. Therefore, BGS has developed PropBase, a generic denormalised data structure within an RDBMS to store property data, to facilitate rapid and standardised data discovery and access, incorporating 2D and 3D physical and chemical property data, with associated metadata. This includes scripts to populate and synchronise the layer with its data sources through structured input and transcription standards. A core component of the architecture includes, an optimised query object, to deliver geoscience information from a structure equivalent to a data warehouse. This enables optimised query performance to deliver data in multiple standardised formats using a web discovery tool. Semantic interoperability is enforced through vocabularies combined from all data sources facilitating searching of related terms. PropBase holds 28.1 million spatially enabled property data points from 10 source databases incorporating over 50 property data types with a vocabulary set that includes 557 property terms. By enabling property data searches across multiple databases PropBase has facilitated new scientific research, previously considered impractical. PropBase is easily extended to incorporate 4D data (time series) and is providing a baseline for new “big data” monitoring projects

    Estimating Associations Between Annual Concentrations of Particulate Matter and Mortality in the United States, Using Data Linkage and Bayesian Maximum Entropy

    Get PDF
    Background: Exposure to fine particulate matter (PM2.5) is an established risk factor for human mortality. However, previous US studies have been limited to select cities or regions or to population subsets (e.g., older adults). Methods: Here, we demonstrate how to use the novel geostatistical method Bayesian maximum entropy to obtain estimates of PM2.5 concentrations in all contiguous US counties, 2000–2016. We then demonstrate how one could use these estimates in a traditional epidemiologic analysis examining the association between PM2.5 and rates of all-cause, cardiovascular, respiratory, and (as a negative control outcome) accidental mortality. Results: We estimated that, for a 1 log(ÎŒg/m3) increase in PM2.5 concentration, the conditional all-cause mortality incidence rate ratio (IRR) was 1.029 (95% confidence interval [CI]: 1.006, 1.053). This implies that the rate of all-cause mortality at 10 ”g/m3 would be 1.020 times the rate at 5 ”g/m3. IRRs were larger for cardiovascular mortality than for all-cause mortality in all gender and race–ethnicity groups. We observed larger IRRs for all-cause, nonaccidental, and respiratory mortality in Black non-Hispanic Americans than White non-Hispanic Americans. However, our negative control analysis indicated the possibility for unmeasured confounding. Conclusion: We used a novel method that allowed us to estimate PM2.5 concentrations in all contiguous US counties and obtained estimates of the association between PM2.5 and mortality comparable to previous studies. Our analysis provides one example of how Bayesian maximum entropy could be used in epidemiologic analyses; future work could explore other ways to use this approach to inform important public health questions

    Using animations of risk functions to visualize trends in US all-cause and cause-specific mortality, 1968-2016

    Get PDF
    Objectives. To use dynamic visualizations of mortality risk functions over both calendar year and age as a way to estimate and visualize patterns in US life spans. Methods. We built 49 synthetic cohorts, 1 per year 1968 to 2016, using National Center for Health Statistics (NCHS) mortality and population data. Within each cohort, we estimated age-specific probabilities of dying from any cause (all-cause analysis) or from a particular cause (cause-specific analysis). We then used Kaplan–Meier (all-cause) or Aalen–Johansen (cause-specific) estimators to obtain risk functions. We illustrated risk functions using time-lapse animations. Results. Median age at death increased from 75 years in 1970 to 83 years in 2015. Risk by age 100 years of cardiovascular mortality decreased (from a risk of 55% in 1970 to 32% in 2015), whereas risk attributable to other (i.e., nonrespiratory and noncardiovascular) causes increased in compensation. Conclusions. Our findings were consistent with the trends published in the NCHS 2015 mortality report, and our dynamic animations added an efficient, interpretable tool for visualizing US mortality trends over age and calendar time

    Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts

    Full text link
    The NASA STEREO mission opened up the possibility to forecast the arrival times, speeds and directions of solar transients from outside the Sun-Earth line. In particular, we are interested in predicting potentially geo-effective Interplanetary Coronal Mass Ejections (ICMEs) from observations of density structures at large observation angles from the Sun (with the STEREO Heliospheric Imager instrument). We contribute to this endeavor by deriving analytical formulas concerning a geometric correction for the ICME speed and arrival time for the technique introduced by Davies et al. (2012, ApJ, in press) called Self-Similar Expansion Fitting (SSEF). This model assumes that a circle propagates outward, along a plane specified by a position angle (e.g. the ecliptic), with constant angular half width (lambda). This is an extension to earlier, more simple models: Fixed-Phi-Fitting (lambda = 0 degree) and Harmonic Mean Fitting (lambda = 90 degree). This approach has the advantage that it is possible to assess clearly, in contrast to previous models, if a particular location in the heliosphere, such as a planet or spacecraft, might be expected to be hit by the ICME front. Our correction formulas are especially significant for glancing hits, where small differences in the direction greatly influence the expected speeds (up to 100-200 km/s) and arrival times (up to two days later than the apex). For very wide ICMEs (2 lambda > 120 degree), the geometric correction becomes very similar to the one derived by M\"ostl et al. (2011, ApJ, 741, id. 34) for the Harmonic Mean model. These analytic expressions can also be used for empirical or analytical models to predict the 1 AU arrival time of an ICME by correcting for effects of hits by the flank rather than the apex, if the width and direction of the ICME in a plane are known and a circular geometry of the ICME front is assumed.Comment: 15 pages, 5 figures, accepted for publication in "Solar Physics

    Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of Solar Eruptions - Sources of Non-Recurrent Geomagnetic Storms and Forbush Decreases

    Full text link
    This study aims at the early diagnostics of geoeffectiveness of coronal mass ejections (CMEs) from quantitative parameters of the accompanying EUV dimming and arcade events. We study events of the 23th solar cycle, in which major non-recurrent geomagnetic storms (GMS) with Dst <-100 nT are sufficiently reliably identified with their solar sources in the central part of the disk. Using the SOHO/EIT 195 A images and MDI magnetograms, we select significant dimming and arcade areas and calculate summarized unsigned magnetic fluxes in these regions at the photospheric level. The high relevance of this eruption parameter is displayed by its pronounced correlation with the Forbush decrease (FD) magnitude, which, unlike GMSs, does not depend on the sign of the Bz component but is determined by global characteristics of ICMEs. Correlations with the same magnetic flux in the solar source region are found for the GMS intensity (at the first step, without taking into account factors determining the Bz component near the Earth), as well as for the temporal intervals between the solar eruptions and the GMS onset and peak times. The larger the magnetic flux, the stronger the FD and GMS intensities are and the shorter the ICME transit time is. The revealed correlations indicate that the main quantitative characteristics of major non-recurrent space weather disturbances are largely determined by measurable parameters of solar eruptions, in particular, by the magnetic flux in dimming areas and arcades, and can be tentatively estimated in advance with a lead time from 1 to 4 days. For GMS intensity, the revealed dependencies allow one to estimate a possible value, which can be expected if the Bz component is negative.Comment: 27 pages, 5 figures. Accepted for publication in Solar Physic

    Water-borne Fluoride and Cortical Bone Mass: A Comparison of Two Communities

    Full text link
    This study investigated the relationship between cortical bone mass in an older female population and their ingestion of fluoride from community water supplies. The study was conducted among lifelong female residents in Lordsburg (3.5 ppm fluoride) and Deming (0.7 ppm fluoride), NM. A total of 151 postmenopausal women ranging in age from 39 to 87 years took part; 69 were residents of the optimal-fluoride community, while the remaining 82 were residents of the high-fluoride community. Although bivariate analyses showed no difference in cortical bone mass between women in the two communities, with multiple regression analyses, significant predictors of bone mass (p < 0.05) were weight, years since menopause, current estrogen supplementation, diabetes, and fluoride exposure status. Based on a model containing all of these variables, women living in the high-fluoride community had a bone mass ranging from 0.004 to 0.039 g/cm 2 less than that of similar women living in the optimum-fluoride community. These results suggest that lifelong ingestion of water containing 3.5 ppm fluoride, compared with water containing 0.7 ppm fluoride, does not increase cortical bone mass in women of similar age, weight, and menopausal status. Under the conditions of this study, cortical bone mass might be reduced in a high-fluoride area.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68177/2/10.1177_00220345900690060601.pd

    Deflection and Rotation of CMEs from Active Region 11158

    Full text link
    Between the 13 and 16 of February 2011 a series of coronal mass ejections (CMEs) erupted from multiple polarity inversion lines within active region 11158. For seven of these CMEs we use the Graduated Cylindrical Shell (GCS) flux rope model to determine the CME trajectory using both Solar Terrestrial Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph images. We then use the Forecasting a CME's Altered Trajectory (ForeCAT) model for nonradial CME dynamics driven by magnetic forces, to simulate the deflection and rotation of the seven CMEs. We find good agreement between the ForeCAT results and the reconstructed CME positions and orientations. The CME deflections range in magnitude between 10 degrees and 30 degrees. All CMEs deflect to the north but we find variations in the direction of the longitudinal deflection. The rotations range between 5\mydeg and 50\mydeg with both clockwise and counterclockwise rotations occurring. Three of the CMEs begin with initial positions within 2 degrees of one another. These three CMEs all deflect primarily northward, with some minor eastward deflection, and rotate counterclockwise. Their final positions and orientations, however, respectively differ by 20 degrees and 30 degrees. This variation in deflection and rotation results from differences in the CME expansion and radial propagation close to the Sun, as well as the CME mass. Ultimately, only one of these seven CMEs yielded discernible in situ signatures near Earth, despite the active region facing near Earth throughout the eruptions. We suggest that the differences in the deflection and rotation of the CMEs can explain whether each CME impacted or missed the Earth.Comment: 18 pages, 6 figures, accepted in Solar Physic

    Changes in social groups across reintroductions and effects on post-release survival

    Get PDF
    Reintroductions, essential to many conservation programmes, disrupt both abiotic and social environments. Despite growing recognition that social connections in animals might alter survival (e.g. social transmission of foraging skills, or transmission of disease), there has thus far been little focus on the consequences of social disruption during reintroductions. Here we investigate if moving familiar social groups may help a threatened species to adjust to its new environment and increase post-release survival. For a reintroduction of 40 juvenile hihi Notiomystis cincta (a threatened New Zealand passerine), we observed social groups before and after translocation to a new site and used social network analysis to study three levels of social change: overall group structure, network associations and individual sociality. We also tested alternate translocation strategies where birds were kept temporarily in aviaries in either a familiar group, or where their prior association was mixed. Although social structure remained similar among juveniles that remained at the source site, we detected significant changes in translocated birds at both the group- and individual- level post-release. However, our holding treatments did not affect these social bonds so we remain unable to maintain or manipulate social groups during translocation. Crucially, there was a small tendency for translocated juveniles that gained more associates during re-assortment of social groups to be more likely to survive their first year post-release. We suggest that prior sociality may not be important during translocations, but rather individuals that are most able to adapt and form associations at a new site are most likely to be the surviving founders of reintroduced populations.Peer reviewe
    • 

    corecore