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Abstract

Background.—Exposure to fine particulate matter (PM2.5) is an established risk factor for 

human mortality. However, previous US studies have been limited to select cities or regions or to 

population subsets (e.g., older adults).

Methods.—Here, we demonstrate how to use the novel geostatistical method Bayesian 

Maximum Entropy to obtain estimates of PM2.5 concentrations in all contiguous US counties, 

2000–2016. We then demonstrate how one could use these estimates in a traditional epidemiologic 

analysis examining the association between PM2.5 and rates of all-cause, cardiovascular, 

respiratory, and (as a negative control outcome) accidental mortality.

Results.—We estimated that, for a 1 log (μg/m3) increase in PM2.5 concentration, the conditional 

all-cause mortality incidence rate ratio (IRR) was 1.029 (95% CI: 1.006, 1.053). This implies that 

the rate of all-cause mortality at 10 μg/m3 would be 1.020 times the rate at 5 μg/m3. IRRs were 

larger for cardiovascular mortality than for all-cause mortality in all gender and race–ethnicity 

groups. We observed larger IRRs for all-cause, non-accidental, and respiratory mortality in Black 

non-Hispanic Americans than White non-Hispanic Americans. However, our negative control 

analysis indicated the possibility for unmeasured confounding.

Conclusions.—We used a novel method that allowed us to estimate PM2.5 concentrations in all 

contiguous US counties and obtained estimates of the association between PM2.5 and mortality 

comparable to previous studies. Our analysis provides one example of how Bayesian Maximum 
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Entropy could be used in epidemiologic analyses; future work could explore other ways to use this 

approach to inform important public health questions.
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Introduction

As one of the six criteria air pollutants, particulate matter (PM) is monitored and regulated 

by the United States (US) Environmental Protection Agency (EPA). National Ambient Air 

Quality Standards have been set for ambient concentrations of PM. In part due to these 

regulations, ambient concentrations of PM have steadily dropped in recent years.1–3 The 

EPA estimates that between 2000 and 2015 daily concentrations of PM with an aerodynamic 

diameter <10 μm (PM10) and PM with an aerodynamic diameter <2.5μm (PM2.5) improved 

by 34% and 40%, respectively.4 Even so, PM remains a ubiquitous exposure, and a large 

body of evidence has established its adverse environmental and health effects, even at 

concentrations below the current regulatory action level.1,3,5,6

Of all the sub-classifications of PM, PM2.5 has been most consistently associated with all-

cause, cardiovascular, and respiratory mortality following acute and long-term exposure.7–18 

The EPA determined in the 2009 and 2019 Integrated Science Assessments that PM2.5 

has a causal effect on mortality and cardiovascular outcomes (and is “likely to be causal” 

for respiratory outcomes).1,3 One limitation of past research on the association between 

PM2.5 and mortality in the US, though, has been the restricted target populations. Often, 

the restrictions have been geographic, i.e. limited to a single city or state, a select group of 

cities, or a subset of US counties.7,13,16,17,19–21 This is understandable if the goal is to study 

unique, localized events, to reduce bias due to spatial confounding, or to investigate research 

questions within a more geographically limited target population. However, researchers and 

policymakers might also be interested in larger target populations, such as the entire US 

population.

Here, we demonstrate how the advanced geostatistical method Bayesian Maximum Entropy 

can be used to interpolate PM2.5 monitor data to inform the annual concentrations in all 

counties in the contiguous US, even those that lack monitors. We then demonstrate how one 

might use these exposure estimates in an analysis assessing the association between PM2.5 

and county-level mortality rates, by fusing the exposure estimates to data from the National 

Center for Health Statistics and the US Census.

METHODS

Data sources

We obtained annual arithmetic average PM2.5 concentrations in μg/m3 from the EPA’s Air 

Quality Systems Database, which includes data on PM2.5 concentrations measured at EPA 

monitoring sites across the US since 1999. While the network of EPA monitors for PM2.5 is 

well dispersed across the country (see eFigure 1), their placement is based on the population 
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size and past air quality within a given geographical area. The location is further intended 

to reflect regional transport of ambient PM2.5.1 The exact location of monitors changed over 

time, and there was not a monitor in every US county in every year. Thus, we interpolated 

the monitor data to obtain county-specific concentrations, as described below.

We obtained mortality counts and mid-year population counts from National Center for 

Health Statistics (NCHS) data aggregated by year, county, age-category (<1 year, 1–4, 5–9, 

10–14, 15–19, 20–24, 25–34, 35–44, 45–54, 55–64, 65–74, 75–84, 85+), gender (male 

or female), race (White, Black, American Indian or Alaskan Native, Asian or Pacific 

Islander), and Hispanic ethnicity (yes, no, or undeclared).22 Underlying cause of death 

was coded using International Classification of Diseases Tenth Revision (ICD-10). We 

defined four categories of mortality that were of substantive interest in our study: all-cause, 

non-accidental (excluding ICD-10 codes with the prefix S, V, Z, or U), select cardiovascular 

(ICD-10: I10-I70) and non-cancerous respiratory mortality (ICD-10: J00-J99).

We were additionally interested in accidental mortality (those causes excluded from non-

accidental mortality) as a negative control outcome.9,11,23–25 Negative control outcomes 

are events that are expected, on the basis of substantive knowledge, to have no causal 

relationship with the exposure under investigation. In an ideal setting, the estimated 

association between the exposure and negative control outcome would be null; therefore, 

a non-null association between these variables can be an indicator of uncontrolled bias in the 

study, assuming the bias is affecting this association in the same manner as for the outcome 

of interest. For example, the approach assumes that the unmeasured confounders for the 

association between the exposure and outcome of interest are also the only unmeasured 

confounders of the association between the exposure and negative control outcome. We use 

the findings from the negative control outcome to infer the possible direction but not the 

magnitude of the bias.23

We derived county-level covariates from the 2000 and 2010 US Censuses and from the 

2005–2016 American Community Surveys (ACS). For the ACS data, we obtained annual 

estimates for those counties that had a population greater than 65,000 and 5-year-summary 

estimates for all counties.26 Due to the gap between the 2000 Census and the start of the 

ACS in 2005, we interpolated values for each covariate using natural cubic splines, such that 

we had one value per county per year.27 The variables included as potential confounders 

were those we hypothesized affect county-level, ambient concentrations of PM2.5 and 

mortality. Accordingly, we obtained data on median household income (in 2000-inflation-

adjusted dollars), percent of individuals who graduated high school, proportion living in 

an urban area, and proportion of the county population that was Black. We categorized 

urbanicity into mostly urban (at least half the population living in an urban area), mostly 

rural (less than half living in an urban area), and rural (no one living in an urban area). This 

covariate set was comparable to other ecologic PM2.5 studies.16,17

Exposure model

To interpolate concentrations of PM2.5, we used the Bayesian Maximum Entropy 

geostatistical method. This estimation approach allowed us to leverage the concept of 

a space/time random field, Z (p), to describe the randomness and correlation in PM2.5 
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measured at space/time points p = (s, t), where s are the spatial coordinates and t is time in 

calendar year. Bayesian Maximum Entropy has been described in detail elsewhere;28–30 we 

summarize below the essential points for our implementation.

Bayesian Maximum Entropy integrates general knowledge and site-specific knowledge 

about a space/time field. General knowledge can include the mean trend (e.g., that 

concentrations decreased over time) and covariance between points, which are modeled 

from the data. This information is used to build the prior probability density function that, 

outside of what is specified by the general knowledge, weakly constrains the data (i.e., 

maximizes information entropy).31,32 Site-specific knowledge is the measured values, i.e. 

annual average PM2.5 concentration at each space/time point. The site-specific knowledge is 

integrated with the prior probability density function using a Bayesian epistemic knowledge 

integration rule,29,33 and a posterior probability density function is obtained at each 

estimation point.

For our implementation, the model inputs were the annual average PM2.5 concentrations 

at EPA monitors. Our estimation grid was defined by the spatial coordinates of the county 

population centers (defined in 2015) at which we sought to estimate annual average PM2.5 

concentrations. We restricted our estimation to counties within the contiguous US.

First, we log transformed the data, such that Y(p) = log (Z(p)). We then obtained the global 

offset removed field X (p) = Y (p) − m (s, t), so that our estimation was conducted in a field 

that was more stable in space and time. The global offset was modeled using the formula mY 

(s, t) = ms (s) + mt (t), where ms (s) was the smoothed spatial mean component (calculated 

by applying an exponential spatial filter to the mean mtj at each time point j). These two 

quantities were calculated as follows:

ms s =
∑i msi × exp −

dsi
Srange

∑i exp −
dsi

Srange

mt t =
∑j mtj × exp −

dtj
Trange

∑j exp −
dtj

Trange

− m

where s is a location of interest, i is the monitoring station, msi is the mean of the measured 

log PM2.5 concentrations at i, dsi is the distance between s and i, t is the time of interest, j 
is the time of the measurement, mtj is the mean of the measured log PM2.5 concentrations 

measured at time j, and dtj is the time difference between t and j. In the second equation, 

the average m of all measured log PM2.5 concentrations was subtracted to avoid double 

counting when ms (s) and mt (t) were added. Finally, the spatial range (Srange) and temporal 

range (Trange) governed the level of spatial and temporal smoothing, respectively. We chose 

to calculate a regionally defined global offset (rather than calculating a single mean for the 

entire US); consequently, we chose a Srange of 50 km. The specified Trange was 3 years.
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Since we subtracted out the global offset, the mean trend for X(p) was set to zero, and we 

found the following nested exponential covariance model below to be a good fit for our data:

cX r, τ = 0.0750 log μg/m3 2 0.7exp − 3r
50km exp − 3τ

14year + 0.3exp − 3r
600km exp − 3τ

1year ,

where r is the spatial distance andτ the time distance between p and p'. To interpret the 

meaning of the chosen model parameters, we specified that the variance of X(p) was 0.075 

(log (μg/m3))2, and that 70% of the covariance in the field was explained by variation over a 

spatial range of 50 km and a temporal range of 14 years (i.e., city-level PM2.5 which changes 

only over long periods of time). Then, 30% of the covariance was explained by variation 

at a spatial range of 600 km and a temporal range of 1 year (i.e., region-level PM2.5 which 

could change more quickly). Using a nested covariance model with two terms allowed us to 

account for variation in PM2.5 over city- and region-level distances and over short and long 

periods of time. One of the advantages of space/time BME over other spatial models is this 

ability to flexibly model space/time correlation.

Lastly, we chose to use a “soft” (i.e., probabilistic) data approach to account for the fact 

that measurements were not taken every day of the year.34–36 We denote nit as the number 

of measurements at monitor i in year t. We treated the annual average from any monitor 

that recorded measurements at least every 3 days as “hard,” non-probabilistic data (nit ≥ 

122). This cut-point was chosen because it reflects the federal reference method for PM2.5. 

Otherwise, data were treated as soft. Specifically, we assumed that the monitor data were 

normally distributed with mean equal to the recorded arithmetic average (μit) and a standard 

deviation specified as follows:

σit =
sit
nit

×
365 − nit

365 ,

where sit was the recorded arithmetic standard deviation.

Outcome model

Our analytic data set contained the interpolated PM2.5 concentrations and sociodemographic 

covariate data merged to the mortality and population counts by year and county. Using 

these data, we estimated the covariate-conditional incidence rate ratios (IRR) comparing 

rates of a given mortality category for a one-unit increase in log PM2.5 concentration. To 

estimate these rate ratios, we used the following Poisson regression model:

log d = β0 + β1log pm + ∑k = 2
40 βkV k + log(n),

where d is the number of deaths, n is the mid-year population count, and V is the set of 

covariates, including indicator terms for age category, calendar year, and urbanicity as well 

as restricted quadratic splines terms (with 3 knots) for income, education, and proportion 

Black. We obtained 95% confidence intervals (CI) using robust standard errors for the 

IRR.37
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We also carried out several supplementary analyses. First, we ran models where the data 

were stratified by gender and race–ethnicity, effectively including interaction terms between 

these potential effect measure modifiers and all variables in the model. Second, in contrast 

to the main analysis which used exposure and outcome data from the same year, we also 

ran models where there was a lag of 1–5 years between the mortality data and the exposure 

and confounder data. For example, in the 1-year-lag analysis, we regressed a county’s 

annual rate of mortality against the PM2.5 concentration from the previous year. In these 

lagged analyses, fewer calendar years of data were included because, for example, we lacked 

exposure data from 5 years before the deaths that occurred in 2000. Finally, we repeated our 

analysis within the subset of counties that had a monitor within its borders in a given year, 

to assess the possible impact of exposure misclassification resulting from including counties 

that did not have a monitor (and whose exposure relied more heavily on the interpolation 

model).

Data cleaning and outcome modeling were carried out using SAS version 9.4 (SAS Institute, 

Cary, NC). Exposure modeling was carried out using the BMELIB version 2.0c library for 

MATLAB (The MathWorks, Inc., Natick, MA).

RESULTS

Across the years 2000–2016, annual average concentrations of PM2.5 decreased (Figure 

1). The national average PM2.5 concentration (using our interpolated estimates) was 12.2 

μg/m3 in 2000 but 8.0 μg/m3 in 2016. The maximum concentration also decreased, from 

24.3 μg/m3 to 14.4 μg/m3 in 2015. The trend in PM2.5 concentrations is reinforced by the 

maps in eFigure 1, which show that the concentrations of measured PM2.5 decreased across 

the entire US. However, high concentrations remained in select areas, such as southern 

California. eFigure 2 illustrates an example of the model output (interpolated estimates and 

their variances) from our implementation of Bayesian Maximum Entropy.

Important socioeconomic and demographic characteristics of the US population across our 

study period are summarized in Table 1. The proportion of the US population who reported 

being Black or Other race increased from 2000 to 2016 (respectively, from 13.1% to 14.1% 

and from 4.9% to 7.5%). The proportion who reported being Hispanic or Latinx also 

increased, from 12.6% to 17.8%. Furthermore, by 2016 more counties were listed as “mostly 

urban” (i.e., more than half their population living in an urban area) than in 2000, and a 

higher percent had graduated high school.

Rates of mortality generally decreased between 2000 and 2016 (Table 2). Comparing rates 

that had been standardized to the age distribution of 2000, we saw that the all-cause 

mortality rate in 2000 was 865.5 per 100,000 person–years and the rate in 2016 was 736.1 

per 100,000 person–years. The rate of cardiovascular mortality in 2000 was 335.7 per 

100,000 person–years, compared to 218.7 in 2016. Respiratory mortality rates were 83.1 per 

100,000 person–years and 70.1 per 100,000 person–years, respectively, for 2000 and 2016.

As illustrated in Figure 2, we estimated that, for every 1 log (μg/m3) increase in PM2.5 

concentration, the all-cause mortality IRR was 1.029 (95% CI: 1.006, 1.053), conditional 
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on all covariates in the model. This implies that the rate of all-cause mortality at 10 μg/m3 

would be 1.020 times the rate at 5 μg/m3 and that the rate at 15 μg/m3 would be 1.012 times 

the rate at 10 μg/m3. Rates of mortality increased as PM2.5 concentration increased, with the 

association being further from the null at lower concentrations than at higher concentrations. 

Results for non-accidental mortality and respiratory mortality were similar in magnitude to 

the all-cause mortality IRRs. For cardiovascular mortality, we estimated that the conditional 

IRR for a 1 log (μg/m3) increase in log PM2.5 concentration was 1.105 (95% CI: 1.055, 

1.157). Finally, we estimated that the IRR for accidental mortality (our negative control 

outcome) was 0.804 (95% CI: 0.690, 0.938). IRRs became closer to the null as the lag 

between exposure and outcome increased (Table 3). With a lag of 5 years, the IRR was 

1.009 (95% CI: 0.982, 1.037) for all-cause mortality and 1.076 (95% CI: 1.033, 1.122) for 

cardiovascular mortality. This was also the case for accidental mortality, which had an IRR 

of 0.821 (95% CI: 0.696, 0.969) when the exposure was lagged by 5 years.

The estimated IRRs stratified by gender were similar to the overall estimates, although men 

had marginally stronger associations than women (Figure 2 and Table 3). For example, with 

no lag, we estimated an IRR for cardiovascular mortality in men of 1.115 (95% CI: 1.062, 

1.171), compared to an IRR of 1.102 (95% CI: 1.053, 1.154) in women. The results stratified 

by race-ethnicity were more striking (Figure 3 and Table 4). The IRRs for all-cause, non-

accidental, and respiratory mortality among Black non-Hispanic Americans were marginally 

further from the null than among White non-Hispanic Americans (except with a lag of 5 

years). With a lag of 0 years, the IRR for all-cause mortality was 1.087 (95% CI: 1.021, 

1.157) for Black non-Hispanic Americans versus 1.047 (95% CI: 1.016, 1.078) for White 

non-Hispanic Americans. The difference for respiratory mortality was even larger: IRRs 

of 1.183 (95% CI: 1.066, 1.313) and 1.017 (95%: 0.981, 1.054) for Black non-Hispanic 

and White non-Hispanic Americans, respectively. The results for cardiovascular mortality 

were similar for these two groups. All IRRs (except with a lag of 5 years) among Hispanic 

Americans were below the null, indicating that mortality rates for Hispanic Americans were 

lower in counties with higher PM2.5 concentrations.

In the analysis using only those counties that had a PM2.5 monitor, we estimated IRRs that 

were similar to the main analysis, both in terms of point estimate and confidence interval 

width. We estimated that, for every 1 log (μg/m3) increase in PM2.5 concentration, the IRR 

for all-cause mortality was 1.027 (95% CI: 1.003, 1.050). The IRRs for cardiovascular and 

respiratory mortality were 1.083 (95% CI: 1.029, 1.141) and 1.026 (95% CI: 0.981, 1.074), 

respectively. Even the negative control outcome results were similar; we estimated an IRR 

for accidental mortality of 0.863 (95% CI: 0.753, 0.990).

DISCUSSION

In this paper, we demonstrated how Bayesian Maximum Entropy can be used to interpolate 

PM2.5 concentrations from EPA monitors to the population center of US counties. We 

then demonstrated how the exposure estimates from this model can be used in a standard 

epidemiologic analysis. Specifically, we estimated the association between the interpolated 

PM2.5 concentrations and rates of mortality among all residents of the contiguous US, 

2000–2016. We found that rates of all-cause, non-accidental, cardiovascular, and respiratory 
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mortality increased as PM2.5 concentrations increased, conditional on the sociodemographic 

variables included in the model. We saw this association overall and in all population sub-

groups, except Hispanic Americans. Associations were generally stronger for cardiovascular 

mortality than for all-cause mortality.

Bayesian Maximum Entropy is a powerful geostatistical method that has seen limited use 

in epidemiology, even though it has greater flexibility than more commonly used spatial 

interpolation methods (such as kriging or inverse distance weighting).13 Our implementation 

here followed approaches described in the environmental modeling literature.34,35 Bayesian 

Maximum Entropy is not the only way we could have obtained nationwide PM2.5 

concentrations, though. For example, we could have used the EPA’s Community Multiscale 

Air Quality Modeling System (CMAQ) or satellite-derived data to obtain exposure 

estimates.38 Nevertheless, there are key advantages of our approach. First, the underlying 

models and assumptions were transparent. We were able as the analysts to choose the form 

of the models being used (e.g., when specifying the covariance model) and many of the 

model parameters (e.g., the mean trend) based on substantive knowledge. We additionally 

were able to specifically estimate PM2.5 concentrations at the population center of each 

county in the contiguous US. Other publicly available data sources generally provide air 

pollution concentrations on a pre-defined grid, from which we would have needed to derive 

county-specific estimates. Here, we were able to target the counties directly.

Second, while our soft data approach was straightforward, more advanced implementations 

of Bayesian Maximum Entropy can take a hybrid approach. In addition to using the 

concentrations recorded at EPA monitors, we could also have integrated into the model 

information from satellites, CMAQ, land use variables, or other sources.36,39–42 This may 

have resulted in more robust exposure predictions,43 but there are a few key limitations 

to incorporating additional data sources. For example, data sources like CMAQ and some 

satellite-derived data involve the use of modeling to incorporate information on atmospheric 

transport or meteorologic variables. Thus, we would have added additional modeling 

assumptions to those we already made. Furthermore, if we included satellite data, we 

would have needed to appropriately account for non-random missingness that results from 

frequency of measurements, cloud coverage, or surface geographic characteristics.43 It is 

finally worth noting that previous studies have observed high correlations and similar cross-

validation results between PM2.5 estimates obtained using a Bayesian Maximum Entropy 

model that incorporated only ground-based measurements and one that incorporated both 

ground-based measurements and satellite data.39,42 One paper also reported similar hazard 

ratio estimates for these two exposure models.39

The results of our analysis largely agreed with the existing literature, which has consistently 

found a positive association between PM2.5 and all-cause and cause-specific mortality. 

However, our estimates were not as strong as those reported by Crouse et al, who estimated 

in a nationwide cohort of Canadian adults (randomly selected to provide detailed census 

data), 1999–2001, hazard ratios for a 10 μg/m3 increase in PM2.5 concentration of 1.15 

for non-accidental mortality and 1.16 for cardiovascular mortality.44 In comparison, we 

estimated IRRs of 1.038 and 1.116 for an increase from 5 μg/m3 to 15 μg/m3, respectively 

for these two categories of cause of death. Our results did not change if we subset to the 
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period 2000–2001 to match the Crouse study. In a nationwide Medicare cohort, followed 

from 2000 to 2012, Di et al estimated all-cause hazard ratios that were also stronger than 

those estimated here. In the single pollutant analysis, they reported a hazard ratio of 1.08 

per 10 μg/m3 increase in PM2.5 concentration. If we restrict our analysis to those 65 years 

of age or older, we estimate an IRR for all-cause mortality of 1.042 (95% CI: 1.041, 1.044) 

per 1 log(μg/m3) increase, which translates to an IRR of 1.046 for an increase in PM2.5 

concentration from 5 μg/m3 to 15 μg/m3.

Our attenuated results could be a result of our target population, data sources, or biases. 

For example, a lack of exchangeability between counties with different concentrations of 

PM2.5 would have led to bias in the results. Indeed, ecologic analyses like the one carried 

out here are particularly vulnerable to residual confounding.45, p. 522−523 If variables such 

as population density or the concentrations of co-pollutants were confounders (by which 

we mean that not controlling for these variables meant there was an open back-door path 

between county-level ambient PM2.5 and mortality), we would have incurred bias by leaving 

them out of our models. The findings from our negative control outcome support the 

possibility that our main results were biased. We estimated a strong negative association 

between PM2.5 and accidental mortality. If accidental mortality was a valid negative control 

(which is based on the assumption that PM2.5 has no true causal effect on the causes of death 

we defined as accidental mortality and that the unmeasured confounders of this relationship 

are the same as those for non-accidental, cardiovascular, and respiratory mortality),9,11,25 

these findings suggest that our main results were biased down, although we cannot infer the 

magnitude of the bias without further assumptions.23

An additional limitation of our analysis was the potential for measurement error. Although 

modeling concentrations of PM2.5 in counties without an EPA monitor allowed us to 

extend the population under consideration from those who live near monitors to the entire 

contiguous US, there will be uncertainty associated with those predicted values that will 

increase as distance from monitor increases. How approaches such as ours can lead to 

measurement error has been discussed in the literature.46 There exist methods we could use 

to account for the effect of measurement error on our point estimate and its standard error; 

for example, parametric or nonparametric bootstrap would be suitable for our analysis due 

to the lack of validation data.46–48 Two challenges to implementing a bootstrap approach 

were the lack of existing software to wrap Bayesian Maximum Entropy within bootstrap 

resamples and the computational intensity of such a process (when the exposure modeling is 

already computationally intensive in one iteration). Future work could focus on integrating 

methods for measurement error correction with Bayesian Maximum Entropy. Nonetheless, 

we saw similar results when we subset to those counties that had a monitor for PM2.5, i.e. 

those counties where we expect exposure misclassification to be minimized in this context.

Here, we demonstrated how one can use the advanced geostatistical method Bayesian 

Maximum Entropy to estimate county-specific concentrations of PM2.5, even in counties 

without monitors. We then demonstrated how the resulting exposure estimates could be used 

in a traditional epidemiologic analysis that quantified the association between county-level 

PM2.5 concentrations and mortality rates in the US, without restricting our analysis to 

counties with monitors. This is not the only possible application of Bayesian Maximum 
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Entropy that could be useful for public health. This approach could also be used to predict 

exposure in observational cohorts that have individual geographical information, to carry 

out risk assessments, or to inform where new air pollution monitors should be built in low- 

to middle-income countries (by determining the regions that have exposure estimates with 

high variance).49,50 Future work could also consider how we might appropriately use the 

exposure estimates obtained from Bayesian Maximum Entropy in analyses that examine 

how interventions on nationwide PM2.5 might have a causal impact on US mortality rates.
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Figure 1. 
Average concentrations of PM2.5 in all counties in the contiguous US across, 2000–2016. 

The gray band represents the 25th and 75th percentiles of the year- and county-specific 

concentrations. PM2.5 concentrations in μg/m3 were derived from the Bayesian Maximum 

Entropy estimates, using the year- and county-specific average concentration in log(μg/m3) 

and its variance.

Rudolph et al. Page 13

Epidemiology. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Incidence rate ratios (IRR) comparing mortality rates per 1 log(μg/m3) increase in 

concentrations of PM2.5 (lag: 0 years) in all US residents and stratified by gender. CI 

indicates confidence interval.
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Figure 3. 
Incidence rate ratios (IRR) comparing mortality rates per 1 log(μg/m3) increase in 

concentrations of PM2.5 (lag: 0 years), stratified by race-ethnicity. CI indicates confidence 

interval.
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Table 1.

Demographic and socioeconomic characteristics of the resident population of the contiguous US, 2000–2016

Characteristic 2000–2016 2000 2016

Women (%) 50.9 51.0 50.8

Race (%)

 Black 13.6 13.1 14.1

 White 80.1 4.9 78.4

 Other 6.3 82.0 7.5

Hispanic ethnicity (%) 15.6 12.6 17.8

Median annual household income ($)
a 34,883.9 34,804.0 33,726.5

Urbanicity (%)

 Mostly urban 86.2 84.8 87.6

 Mostly rural 12.2 13.2 10.8

 Rural 1.7 2.1 1.7

Population graduated high school (%)
b 83.2 77.6 85.9

a
National median of county-specific median incomes, in 2000 inflation-adjusted dollars

b
National average of county-specific percents
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