27,808 research outputs found
Direct N-body Simulations of Rubble Pile Collisions
There is increasing evidence that many km-sized bodies in the Solar System
are piles of rubble bound together by gravity. We present results from a
project to map the parameter space of collisions between km-sized spherical
rubble piles. The results will assist in parameterization of collision outcomes
for Solar System formation models and give insight into fragmentation scaling
laws. We use a direct numerical method to evolve the positions and velocities
of the rubble pile particles under the constraints of gravity and physical
collisions. We test the dependence of the collision outcomes on impact
parameter and speed, impactor spin, mass ratio, and coefficient of restitution.
Speeds are kept low (< 10 m/s, appropriate for dynamically cool systems such as
the primordial disk during early planet formation) so that the maximum strain
on the component material does not exceed the crushing strength. We compare our
results with analytic estimates and hydrocode simulations. Off-axis collisions
can result in fast-spinning elongated remnants or contact binaries while fast
collisions result in smaller fragments overall. Clumping of debris escaping
from the remnant can occur, leading to the formation of smaller rubble piles.
In the cases we tested, less than 2% of the system mass ends up orbiting the
remnant. Initial spin can reduce or enhance collision outcomes, depending on
the relative orientation of the spin and orbital angular momenta. We derive a
relationship between impact speed and angle for critical dispersal of mass in
the system. We find that our rubble piles are relatively easy to disperse, even
at low impact speed, suggesting that greater dissipation is required if rubble
piles are the true progenitors of protoplanets.Comment: 30 pages including 4 tables, 8 figures. Revised version to be
published in Icarus
Classification and analysis of emission-line galaxies using mean field independent component analysis
We present an analysis of the optical spectra of narrow emission-line
galaxies, based on mean field independent component analysis (MFICA). Samples
of galaxies were drawn from the Sloan Digital Sky Survey (SDSS) and used to
generate compact sets of `continuum' and `emission-line' component spectra.
These components can be linearly combined to reconstruct the observed spectra
of a wider sample of galaxies. Only 10 components - five continuum and five
emission line - are required to produce accurate reconstructions of essentially
all narrow emission-line galaxies; the median absolute deviations of the
reconstructed emission-line fluxes, given the signal-to-noise ratio (S/N) of
the observed spectra, are 1.2-1.8 sigma for the strong lines. After applying
the MFICA components to a large sample of SDSS galaxies we identify the regions
of parameter space that correspond to pure star formation and pure active
galactic nucleus (AGN) emission-line spectra, and produce high S/N
reconstructions of these spectra.
The physical properties of the pure star formation and pure AGN spectra are
investigated by means of a series of photoionization models, exploiting the
faint emission lines that can be measured in the reconstructions. We are able
to recreate the emission line strengths of the most extreme AGN case by
assuming the central engine illuminates a large number of individual clouds
with radial distance and density distributions, f(r) ~ r^gamma and g(n) ~
n^beta, respectively. The best fit is obtained with gamma = -0.75 and beta =
-1.4. From the reconstructed star formation spectra we are able to estimate the
starburst ages. These preliminary investigations serve to demonstrate the
success of the MFICA-based technique in identifying distinct emission sources,
and its potential as a tool for the detailed analysis of the physical
properties of galaxies in large-scale surveys.Comment: MNRAS accepted. 29 pages, 24 figures, 3 table
Interpreting the Ionization Sequence in AGN Emission-Line Spectra
We investigate the physical cause of the great range in the ionization level
seen in the spectra of narrow lined active galactic nuclei (AGN). Mean field
independent component analysis identifies examples of individual SDSS galaxies
whose spectra are not dominated by emission due to star formation (SF), which
we designate as AGN. We assembled high S/N ratio composite spectra of a
sequence of these AGN defined by the ionization level of their narrow-line
regions (NLR), extending down to very low-ionization cases. We used a local
optimally emitting cloud (LOC) model to fit emission-line ratios in this AGN
sequence. These included the weak lines that can be measured only in the
co-added spectra, providing consistency checks on strong line diagnostics.
After integrating over a wide range of radii and densities our models indicate
that the radial extent of the NLR is the major parameter in determining the
position of high to moderate ionization AGN along our sequence, providing a
physical interpretation for their systematic variation. Higher ionization AGN
contain optimally emitting clouds that are more concentrated towards the
central continuum source than in lower ionization AGN. Our LOC models indicate
that for the objects that lie on our AGN sequence, the ionizing luminosity is
anticorrelated with the NLR ionization level, and hence anticorrelated with the
radial concentration and physical extent of the NLR. A possible interpretation
that deserves further exploration is that the ionization sequence might be an
age sequence where low ionization objects are older and have systematically
cleared out their central regions by radiation pressure. We consider that our
AGN sequence instead represents a mixing curve of SF and AGN spectra, but argue
that while many galaxies do have this type of composite spectra, our AGN
sequence appears to be a special set of objects with negligible SF excitation.Comment: 57 pages; 18 figures, accepted by MNRA
Leech Parasitism of the Gulf Coast Box Turtle, Terrapene carolina major (Testudines:Emydidae) in Mississippi, USA
Ten leeches were collected from a Gulf Coast box turtle, Terrapene carolina major, found crossing a road in Gulfport, Harrison County, Mississippi, USA. Eight of the leeches were identified as Placobdella multilineata and 2 were identified as Helobdella europaea. This represents the second vouchered report of leeches from a box turtle. Helobdella europaea is reported for the first time associated with a turtle and for the second time from the New World
Restrictions of generalized Verma modules to symmetric pairs
We initiate a new line of investigation on branching problems for generalized
Verma modules with respect to complex reductive symmetric pairs (g,k). Here we
note that Verma modules of g may not contain any simple module when restricted
to a reductive subalgebra k in general.
In this article, using the geometry of K_C orbits on the generalized flag
variety G_C/P_C, we give a necessary and sufficient condition on the triple
(g,k, p) such that the restriction X|_k always contains simple k-modules for
any g-module lying in the parabolic BGG category O^p attached to a
parabolic subalgebra p of g.
Formulas are derived for the Gelfand-Kirillov dimension of any simple
k-module occurring in a simple generalized Verma module of g. We then prove
that the restriction X|_k is multiplicity-free for any generic g-module X \in O
if and only if (g,k) is isomorphic to a direct sum of (A_n,A_{n-1}), (B_n,D_n),
or (D_{n+1},B_n). We also see that the restriction X|_k is multiplicity-free
for any symmetric pair (g, k) and any parabolic subalgebra p with abelian
nilradical and for any generic g-module X \in O^p. Explicit branching laws are
also presented.Comment: 31 pages, To appear in Transformation Group
The Nature of the H2-Emitting Gas in the Crab Nebula
Understanding how molecules and dust might have formed within a rapidly
expanding young supernova remnant is important because of the obvious
application to vigorous supernova activity at very high redshift. In previous
papers, we found that the H2 emission is often quite strong, correlates with
optical low-ionization emission lines, and has a surprisingly high excitation
temperature. Here we study Knot 51, a representative, bright example, for which
we have available long slit optical and NIR spectra covering emission lines
from ionized, neutral, and molecular gas, as well as HST visible and SOAR
Telescope NIR narrow-band images. We present a series of CLOUDY simulations to
probe the excitation mechanisms, formation processes and dust content in
environments that can produce the observed H2 emission. We do not try for an
exact match between model and observations given Knot 51's ambiguous geometry.
Rather, we aim to explain how the bright H2 emission lines can be formed from
within the volume of Knot 51 that also produces the observed optical emission
from ionized and neutral gas. Our models that are powered only by the Crab's
synchrotron radiation are ruled out because they cannot reproduce the strong,
thermal H2 emission. The simulations that come closest to fitting the
observations have the core of Knot 51 almost entirely atomic with the H2
emission coming from just a trace molecular component, and in which there is
extra heating. In this unusual environment, H2 forms primarily by associative
detachment rather than grain catalysis. In this picture, the 55 H2-emitting
cores that we have previously catalogued in the Crab have a total mass of about
0.1 M_sun, which is about 5% of the total mass of the system of filaments. We
also explore the effect of varying the dust abundance. We discuss possible
future observations that could further elucidate the nature of these H2 knots.Comment: 51 pages, 15 figures, accepted for publication in MNRAS, revised
Figure 12 results unchange
Interpreting the Ionization Sequence in Star-Forming Galaxy Emission-Line Spectra
High ionization star forming (SF) galaxies are easily identified with strong
emission line techniques such as the BPT diagram, and form an obvious
ionization sequence on such diagrams. We use a locally optimally emitting cloud
model to fit emission line ratios that constrain the excitation mechanism,
spectral energy distribution, abundances and physical conditions along the
star-formation ionization sequence. Our analysis takes advantage of the
identification of a sample of pure star-forming galaxies, to define the
ionization sequence, via mean field independent component analysis. Previous
work has suggested that the major parameter controlling the ionization level in
SF galaxies is the metallicity. Here we show that the observed SF- sequence
could alternatively be interpreted primarily as a sequence in the distribution
of the ionizing flux incident on gas spread throughout a galaxy. Metallicity
variations remain necessary to model the SF-sequence, however, our best models
indicate that galaxies with the highest and lowest observed ionization levels
(outside the range -0.37 < log [O III]/H\b{eta} < -0.09) require the variation
of an additional physical parameter other than metallicity, which we determine
to be the distribution of ionizing flux in the galaxy.Comment: 41 pages, 17 figures, 9 tables, accepted to MNRA
Exploring the movement dynamics of deception
Both the science and the everyday practice of detecting a lie rest on the same assumption: hidden cognitive states that the liar would like to remain hidden nevertheless influence observable behavior. This assumption has good evidence. The insights of professional interrogators, anecdotal evidence, and body language textbooks have all built up a sizeable catalog of non-verbal cues that have been claimed to distinguish deceptive and truthful behavior. Typically, these cues are discrete, individual behaviors—a hand touching a mouth, the rise of a brow—that distinguish lies from truths solely in terms of their frequency or duration. Research to date has failed to establish any of these non-verbal cues as a reliable marker of deception. Here we argue that perhaps this is because simple tallies of behavior can miss out on the rich but subtle organization of behavior as it unfolds over time. Research in cognitive science from a dynamical systems perspective has shown that behavior is structured across multiple timescales, with more or less regularity and structure. Using tools that are sensitive to these dynamics, we analyzed body motion data from an experiment that put participants in a realistic situation of choosing, or not, to lie to an experimenter. Our analyses indicate that when being deceptive, continuous fluctuations of movement in the upper face, and somewhat in the arms, are characterized by dynamical properties of less stability, but greater complexity. For the upper face, these distinctions are present despite no apparent differences in the overall amount of movement between deception and truth. We suggest that these unique dynamical signatures of motion are indicative of both the cognitive demands inherent to deception and the need to respond adaptively in a social context
Fungicides for Potato Blight Control
South Dakota has an important potato- growing area in Clark, Codington, Hamlin and Deuel counties. Production of certified seed has become one of the important phases of the potato industry in South Dakota. In addition to the main commercial seed and table stock production areas indicated above, smaller producing areas are located in various sections of the state, not to mention the familiar potato patch in most home gardens. Likewise, with the coming of irrigation in the James River Valley of South Dakota, potato production will probably increase further. Losses in yield and quality of potatoes are severe in seasons favorable to the development of foliage diseases. While these diseases do not occur in serious amounts every season in South Dakota, the profits may be wiped out in those years when they are prevalent. When these diseases strike in epidemic proportions, one of the important effects which they have on the crop is the prevention of normal sizing of the tubers, thereby resulting in a reduction of U. S. No. 1 potatoes. For this reason, it is important to know what control measures are effective and can be easily and quickly applied when these diseases strike the crop. An effective fungicide, properly applied, can control these foliage diseases, and by removing another crop hazard can thereby add to the stability of commercial and certified seed potato production in South Dakota. Chemical fungicides, applied as sprays or dusts, differ in their effectiveness in controlling crop diseases. A particular fungicide might be highly effective in combating one type of disease, but may not be very effective against another. Consequently, it becomes necessary to test many chemicals over a period of several years to determine their effectiveness as well as the dosage rate and the proper time of the season to apply them. The most prevalent fungus diseases affecting potato foliage in the state are early blight, caused by Alternaria solcmi, and late blight, caused by Phytophthora infestans. Early blight is present to some extent every season in South Dakota, and causes losses through reduced grade and yield. The disease first appears as small oval or angular brown spots on the leaves with characteristic target-like markings. As the spots increase in size and number the affected leaves die. As a result of this defoliation the yield, especially of U. S. No. 1 grade potatoes, is reduced. During those seasons when conditions are favorable for the development of late blight, losses through reduced yields and tuber rot become costly to potato growers. Late blight is favored by cool temperatures and relatively good moisture conditions. This disease first appears on the leaves as pale green, water-soaked, irregular-shaped spots which may enlarge rapidly, turn brown or black, and show a white mildew-like appearance on the lower surface of diseased leaves. The stems can become infected and the entire plant may be killed in a few days. Under conditions favorable for the disease (moderate temperatures, with high humidity, heavy clews or frequent rains), it can spread rapidly throughout a field. Spores from diseased foliage washed down to the tubers by rain or brought in contact with them during digging operations can expose tubers to infection with late blight. Late blight-infected tubers develop what is known as late blight tuber rot, either in the field or in storage. To protect potato plants from these fungus diseases, it is necessary to keep the foliage coated with an effective fungicide. It has been shown experimentally that fungicides applied as sprays provide better coverage and disease control than those applied as dusts. A series of field experiments were initiated in 1945 at the Experiment Station at Brookings with the object of developing a potato spray program adapted to South Dakota conditions. In 1946, these tests formed a part of a regional potato fungicide trial in which six states in the upper Mississippi Valley participated. From 1947 to 1949 the tests were included in the national cooperative fungicide experiments sponsored by a Special Committee on the Coordination of Field Tests with New Fungicidal Sprays and Dusts, appointed by the American Phytopathological Society
- …