105 research outputs found

    Trained and Amphetamine-Induced Circling Behavior in Lesioned, Transplanted Rats

    Get PDF
    Rats were trained to turn for water reinforcement and then were given unilateral 6- hydroxydopamine lesions. After lesion, rats showed deficits in trained turning both contraand ipsilateral to the side of the lesion, with contralateral turning more severely impaired. The lesioned rats were then transplanted with fetal mesencephalic dopamine tissue into striatum. A control group of lesioned rats were sham transplanted. Four weeks after transplant, 1.5 mg/kg D-amphetamine challenge injections were used to test the functioning of the transplants. In the control rats, D-amphetamine induced ipsilateral turning; in transplanted rats, D-amphetamine slowed the rate of ipsilateral turning or reversed the direction of amphetamine-induced rotation. Only rats which reversed their, amphetamine-induced turn direction after transplant were used for the rest of the experiment. Trained turning was assessed at 4, 8, 12 and 16 weeks post transplant. Transplants did not improve learned performance at any time post transplant. When D-amphetamine was administered in conjunction with the trained turning sessions, a low dose (0.12 mg/kg) enhanced contralateral trained turn rates, without affecting ipsilateral turn rates. Higher doses of amphetamine reduced ipsilateral turn rate in the transplanted animals. The results of this study suggest that transplants alone do not reinstate performance of conditioned rotation

    Sex-dependent associations between addiction-related behaviors and the microbiome in outbred rats.

    Get PDF
    BackgroundMultiple factors contribute to the etiology of addiction, including genetics, sex, and a number of addiction-related behavioral traits. One behavioral trait where individuals assign incentive salience to food stimuli ("sign-trackers", ST) are more impulsive compared to those that do not ("goal-trackers", GT), as well as more sensitive to drugs and drug stimuli. Furthermore, this GT/ST phenotype predicts differences in other behavioral measures. Recent studies have implicated the gut microbiota as a key regulator of brain and behavior, and have shown that many microbiota-associated changes occur in a sex-dependent manner. However, few studies have examined how the microbiome might influence addiction-related behaviors. To this end, we sought to determine if gut microbiome composition was correlated with addiction-related behaviors determined by the GT/ST phenotype.MethodsOutbred male (N=101) and female (N=101) heterogeneous stock rats underwent a series of behavioral tests measuring impulsivity, attention, reward-learning, incentive salience, and locomotor response. Cecal microbiome composition was estimated using 16S rRNA gene amplicon sequencing. Behavior and microbiome were characterized and correlated with behavioral phenotypes. Robust sex differences were observed in both behavior and microbiome; further analyses were conducted within sex using the pre-established goal/sign-tracking (GT/ST) phenotype and partial least squares differential analysis (PLS-DA) clustered behavioral phenotype.ResultsOverall microbiome composition was not associated to the GT/ST phenotype. However, microbial alpha diversity was significantly decreased in female STs. On the other hand, a measure of impulsivity had many significant correlations to microbiome in both males and females. Several measures of impulsivity were correlated with the genus Barnesiella in females. Female STs had notable correlations between microbiome and attentional deficient. In both males and females, many measures were correlated with the bacterial families Ruminocococcaceae and Lachnospiraceae.ConclusionsThese data demonstrate correlations between several addiction-related behaviors and the microbiome specific to sex

    Sex-dependent associations between addiction-related behaviors and the microbiome in outbred rats

    Get PDF
    Background: Multiple factors contribute to the etiology of addiction, including genetics, sex, and a number of addiction-related behavioral traits. One behavioral trait where individuals assign incentive salience to food stimuli (â sign-trackersâ , ST) are more impulsive compared to those that do not (â goal-trackersâ , GT), as well as more sensitive to drugs and drug stimuli. Furthermore, this GT/ST phenotype predicts differences in other behavioral measures. Recent studies have implicated the gut microbiota as a key regulator of brain and behavior, and have shown that many microbiota-associated changes occur in a sex-dependent manner. However, few studies have examined how the microbiome might influence addiction-related behaviors. To this end, we sought to determine if gut microbiome composition was correlated with addiction-related behaviors determined by the GT/ST phenotype. Methods: Outbred male (N=101) and female (N=101) heterogeneous stock rats underwent a series of behavioral tests measuring impulsivity, attention, reward-learning, incentive salience, and locomotor response. Cecal microbiome composition was estimated using 16S rRNA gene amplicon sequencing. Behavior and microbiome were characterized and correlated with behavioral phenotypes. Robust sex differences were observed in both behavior and microbiome; further analyses were conducted within sex using the pre-established goal/sign-tracking (GT/ST) phenotype and partial least squares differential analysis (PLS-DA) clustered behavioral phenotype. Results: Overall microbiome composition was not associated to the GT/ST phenotype. However, microbial alpha diversity was significantly decreased in female STs. On the other hand, a measure of impulsivity had many significant correlations to microbiome in both males and females. Several measures of impulsivity were correlated with the genus Barnesiella in females. Female STs had notable correlations between microbiome and attentional deficient. In both males and females, many measures were correlated with the bacterial families Ruminocococcaceae and Lachnospiraceae. Conclusions: These data demonstrate correlations between several addiction-related behaviors and the microbiome specific to sex

    Environmental Barcoding Reveals Massive Dinoflagellate Diversity in Marine Environments

    Get PDF
    Rowena F. Stern is with University of British Columbia, Ales Horak is with University of British Columbia, Rose L. Andrew is with University of British Columbia, Mary-Alice Coffroth is with State University of New York at Buffalo, Robert A. Andersen is with the Bigelow Laboratory for Ocean Sciences, Frithjof C. Küpper is with the Scottish Marine Institute, Ian Jameson is with CSIRO Marine and Atmospheric Research, Mona Hoppenrath is with the German Center for Marine Biodiversity Research, Benoît Véron is with University of Caen Lower Normandy and the National Institute for Environmental Studies, Fumai Kasai is with the National Institute for Environmental Studies, Jerry Brand is with UT Austin, Erick R. James is with University of British Columbia, Patrick J. Keeling is with University of British Columbia.Background -- Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known “species”, as a reference to measure the natural diversity in three marine environments. Methodology/Principal Findings -- In this study, we assembled a large cytochrome c oxidase 1 (COI) barcode database from 8 public algal culture collections plus 3 private collections worldwide resulting in 336 individual barcodes linked to specific cultures. We demonstrate that COI can identify to the species level in 15 dinoflagellate genera, generally in agreement with existing species names. Exceptions were found in species belonging to genera that were generally already known to be taxonomically challenging, such as Alexandrium or Symbiodinium. Using this barcode database as a baseline for cultured dinoflagellate diversity, we investigated the natural diversity in three diverse marine environments (Northeast Pacific, Northwest Atlantic, and Caribbean), including an evaluation of single-cell barcoding to identify uncultivated groups. From all three environments, the great majority of barcodes were not represented by any known cultured dinoflagellate, and we also observed an explosion in the diversity of genera that previously contained a modest number of known species, belonging to Kareniaceae. In total, 91.5% of non-identical environmental barcodes represent distinct species, but only 51 out of 603 unique environmental barcodes could be linked to cultured species using a conservative cut-off based on distances between cultured species. Conclusions/Significance -- COI barcoding was successful in identifying species from 70% of cultured genera. When applied to environmental samples, it revealed a massive amount of natural diversity in dinoflagellates. This highlights the extent to which we underestimate microbial diversity in the environment.This project was funded by Genome Canada and the Canadian Barcode of Life Network. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Effects of High-Dose Methamphetamine in the Aging Rat: Differential Reinforcement of Low-Rate 72-s Schedule Behavior and Neurochemistry 1

    No full text
    ABSTRACT High-dose methamphetamine (METH) causes damage to the dopamine and serotonin neurons in the brains of laboratory animals. The purpose of this report was to determine the longterm consequences of high-dose METH treatment on behavior and neurochemistry. Rats were trained on the differential reinforcement of low-rate 72-s (DRL 72-s) schedule of reinforcement. Twelve weeks after training began (age 23 weeks), they received one or three high-dose METH regimens. Each regimen consisted of four injections of 15 mg/kg, at 2-h intervals. Each regimen was separated by 7 weeks. A second group received METH treatment at age 23 weeks, but behavioral training was not initiated until the rats reached age 60 weeks. A third group received METH treatment without behavioral training. DRL behavior showed mild impairments 3 to 18 weeks after the onset of treatment; the impairments did not persist into middle age. At age 70 weeks, serotonin concentrations were decreased in somatosensory cortex, occipital cortex, and hippocampus but not in other subcortical structures. Serotonin tissue concentrations were enhanced in septum and striatum but only in rats receiving three regimens and behavioral training. Dopamine was not depleted at age 70 weeks. In three additional groups, one, two, or three METH regimens were administered, and tissue concentrations were measured 6 weeks after the last treatment (corresponding to the times of the behavioral test blocks in the DRL experiments). Serotonin depletions were noted in cortex, hippocampus, amygdala, and striatum but not in septum, hypothalamus, nucleus accumbens/olfactory tubercle, or ventral midbrain. Dopamine was decreased in striatum and septum but not in nucleus accumbens/olfactory tubercle, amygdala, hypothalamus, or ventral midbrain. DRL 72-s schedule impairments are attributed to serotonin depletions. Three METH regimens did not result in greater behavioral or neurochemical deficits than one regimen. Humans who abuse the amphetamines maintain the habit for long periods of tim
    corecore