7,016 research outputs found
Three-Year Creel Census of Lake Catherine, Lake Hamilton, and Lake Ouachita, Arkansas
Copia digital. Madrid : Ministerio de Educación, Cultura y Deporte, 201
Direct and indirect selection on flowering time, water-use efficiency (WUE, δ (13)C), and WUE plasticity to drought in Arabidopsis thaliana.
Flowering time and water-use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time, WUE, and WUE plasticity to drought in Arabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) Is WUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions of A. thaliana grown in well-watered and season-ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment. WUE and flowering time were consistently positively genetically correlated. WUE was correlated with WUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and low WUE, with drought favoring earlier flowering significantly more than well-watered conditions. Selection for lower WUE was marginally stronger under drought. There were no net fitness costs of WUE plasticity. WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation between WUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions of A. thaliana. WUE plasticity may be favored over completely fixed development in environments with periodic drought
Variation in nutrient resorption by desert shrubs
Plant nutrient resorption prior to leaf senescence is an important nutrient conservation mechanism for aridland plant species. However, little is known regarding the phylogenetic and environmental factors influencing this trait. Our objective was to compare nitrogen (N) and phosphorous (P) resorption in a suite of species in the Asteraceae and Chenopodiaceae and assess the impact of soil salinity on nitrogen resorption. Although asters and chenopods did not differ in N resorption proficiency, chenopods were more proficient than asters at resorbing P. Plant responses to salinity gradients were species-specific and likely related to different salt-tolerances of the species. During the three year study, precipitation varied 6.4- and 9.9-fold from the long term averages at our two desert sites; despite these differences, annual variation in nutrient resorption was not linked to annual precipitation. More detailed studies are required to understand the influence of salinity and precipitation on resorption. Understanding controls on this trait may give insight into how species will respond to anthropogenic soil salinization and desertification
Feedback-enhanced algorithm for aberration correction of holographic atom traps
We show that a phase-only spatial light modulator can be used to generate
non-trivial light distributions suitable for trapping ultracold atoms, when the
hologram calculation is included within a simple and robust feedback loop that
corrects for imperfect device response and optical aberrations. This correction
reduces the discrepancy between target and experimental light distribution to
the level of a few percent (RMS error). We prove the generality of this
algorithm by applying it to a variety of target light distributions of
relevance for cold atomic physics.Comment: 5 pages, 4 figure
The chemistry of Formycin biosynthesis
Remarkable progress has been made to elucidate the structural and mechanistic enzymology of the biosynthetic pathways that give rise to naturally occurring C-nucleosides. These compounds are generally cytotoxic and exhibit interesting antiviral, antibiotic and anti-parasitic activity. Here we review current knowledge concerning formycin biosynthesis and highlight deficiencies in our understanding of key chemical transformations in the pathway
Evaluation of a tumor microenvironment-based prognostic score in primary operable colorectal cancer
Purpose: The tumor microenvironment is recognized as an important determinant of progression and outcome in colorectal cancer. The aim of the present study was to evaluate a novel tumor microenvironment–based prognostic score, based on histopathologic assessment of the tumor inflammatory cell infiltrate and tumor stroma, in patients with primary operable colorectal cancer.
Experimental Design: Using routine pathologic sections, the tumor inflammatory cell infiltrate and stroma were assessed using Klintrup–Mäkinen (KM) grade and tumor stroma percentage (TSP), respectively, in 307 patients who had undergone elective resection for stage I–III colorectal cancer. The clinical utility of a cumulative score based on these characteristics was examined.
Results: On univariate analysis, both weak KM grade and high TSP were associated with reduced survival (HR, 2.42; P = 0.001 and HR, 2.05; P = 0.001, respectively). A cumulative score based on these characteristics, the Glasgow Microenvironment Score (GMS), was associated with survival (HR, 1.93; 95% confidence interval, 1.36–2.73; P < 0.001), independent of TNM stage and venous invasion (both P < 0.05). GMS stratified patients in to three prognostic groups: strong KM (GMS = 0), weak KM/low TSP (GMS = 1), and weak KM/high TSP (GMS = 2), with 5-year survival of 89%, 75%, and 51%, respectively (P < 0.001). Furthermore, GMS in combination with node involvement, venous invasion, and mismatch repair status further stratified 5-year survival (92% to 37%, 93% to 27%, and 100% to 37%, respectively).
Conclusions: The present study further confirms the clinical utility of assessment of the tumor microenvironment in colorectal cancer and introduces a simple, routinely available prognostic score for the risk stratification of patients with primary operable colorectal cancer
The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana.
Ecologists and physiologists have documented extensive variation in water use efficiency (WUE) in Arabidopsis thaliana, as well as association of WUE with climatic variation. Here, we demonstrate correlations of whole-plant transpiration efficiency and carbon isotope composition (δ(13)C) among life history classes of A. thaliana. We also use a whole-plant cuvette to examine patterns of co-variation in component traits of WUE and δ(13)C. We find that stomatal conductance (g s) explains more variation in WUE than does A. Overall, there was a strong genetic correlation between A and g s, consistent with selection acting on the ratio of these traits. At a more detailed level, genetic variation in A was due to underlying variation in both maximal rate of carboxylation (V cmax) and maximum electron transport rate (Jmax). We also found strong effects of leaf anatomy, where lines with lower WUE had higher leaf water content (LWC) and specific leaf area (SLA), suggesting a role for mesophyll conductance (g m) in variation of WUE. We hypothesize that this is due to an effect through g m, and test this hypothesis using the abi4 mutant. We show that mutants of ABI4 have higher SLA, LWC, and g m than wild-type, consistent with variation in leaf anatomy causing variation in g m and δ(13)C. These functional data also add further support to the central, integrative role of ABI4 in simultaneously altering ABA sensitivity, sugar signaling, and CO2 assimilation. Together our results highlight the need for a more holistic approach in functional studies, both for more accurate annotation of gene function and to understand co-limitations to plant growth and productivity
Environmental stress and genetics influence night-time leaf conductance in the C4 grass Distichlis spicata
Growing awareness of night-time leaf conductance (gnight) in many species, as well as genetic variation in gnight within several species, has raised questions about how genetic variation and environmental stress interact to influence the magnitude of gnight. The objective of this study was to investigate how genotype salt tolerance and salinity stress affect gnight for saltgrass [Distichlis spicata (L.) Greene]. Across genotypes and treatments, night-time water loss rates were 5–20% of daytime rates. Despite growth declining 37–87% in the high salinity treatments (300 mM and 600 mM NaCl), neither treatment had any effect on gnight in four of the six genotypes compared with the control treatment (7 mM NaCl). Daytime leaf conductance (gday) also was not affected by salinity treatment in three of the six genotypes. There was no evidence that more salt tolerant genotypes (assessed as ability to maintain growth with increasing salinity) had a greater capacity to maintain gnight or gday at high salinity. In addition, gnight as a percentage of gday was unaffected by treatment in the three most salt tolerant genotypes. Although gnight in the 7 mM treatment was always highest or not different compared with the 300 mM and 600 mM treatments, gday was generally highest in the 300 mM treatment, indicating separate regulation of gnight and gday in response to an environmental stress. Thus, it is clear that genetics and environment both influence the magnitude of gnight for this species. Combined effects of genetic and environmental factors are likely to impact our interpretation of variation of gnight in natural populations
Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.
Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients
- …