276 research outputs found

    Low temperature magnetic properties and spin dynamics in single crystals of Cr8Zn antiferromagnetic molecular rings

    Get PDF
    Under the terms of the CC BY license.-- et al.A detailed experimental investigation of the effects giving rise to the magnetic energy level structure in the vicinity of the level crossing (LC) at low temperature is reported for the open antiferromagnetic molecular ring CrZn. The study is conducted by means of thermodynamic techniques (torque magnetometry, magnetization and specific heat measurements) and microscopic techniques (nuclear magnetic resonance line width, nuclear spin lattice, and spin-spin relaxation measurements). The experimental results are shown to be in excellent agreement with theoretical calculations based on a minimal spin model Hamiltonian, which includes a Dzyaloshinskii-Moriya interaction. The first ground state level crossing at μH = 2.15 T is found to be an almost true LC while the second LC at μH = 6.95 T has an anti-crossing gap of Δ = 0.19 K. In addition, both NMR and specific heat measurements show the presence of a level anti-crossing between excited states at μH = 4.5 T as predicted by the theory. In all cases, the fit of the experimental data is improved by introducing a distribution of the isotropic exchange couplings (J), i.e., using a J strain model. The peaks at the first and second LCs in the nuclear spin-lattice relaxation rate are dominated by inelastic scattering and a value of Γ ∼ 10 rad/s is inferred for the life time broadening of the excited state of the open ring, due to spin phonon interaction. A loss of NMR signal (wipe-out effect) is observed for the first time at LC and is explained by the enhancement of the spin-spin relaxation rate due to the inelastic scattering.This work was financially supported by the Italian FIRB Project No. RBFR12RPD1 of the Italian MIUR “New Challenges in Molecular Nanomagnetism: From Spin Dynamics to Quantum-Information Processing.”Peer Reviewe

    Self Assembly of Copper(I) and Silver(I) Butterfly Clusters with 2-Mercaptothiazoline

    Get PDF
    X-ray data obtained from poor crystals which formed from the reaction of copper(II) acetate with 2-mercaptothiazoline reveal the formation of a product that is a polymer formed of tetranuclear, butterfly shaped Cu4(MT)4, 1, clusters. Preparation, isolation and structural characterization of a series of isostructural butterfly complexes was accomplished by addition of a Lewis base (pyridine, PPh3, or ASPI13) to the precipitate obtained from the reaction of copper(II) and/or silver(I) acetate with the appropriate stoichiometric amount of 2-mercaptothiazoline. The general formula of these clusters is L2M4(MT)4; 2, L = PPI13 and M = Cu; 3, L = AsPh3 and M = Cu; 6, L = PPI13 and M = Ag; MT = C3H4NS2_, known as 2-mer- captothiazolinate. The polymer [pyCu4(MT)4]„, 4, formed by the addition of pyridine to 1, was also characterized crystallographically. A mixed metal butterfly complex, (PPh3)2Ag2Cu2(MT)4, 8, is formed by addition of PPI13 to a suspension of the precipitate formed upon reaction of the free HMT ligand with a 1:1 mixture of copper(II) and silver(I) acetates in CH2CI2. FD-MS results of each of the precipitates obtained from the metal acetates and the free ligand indicate that the monomeric unit is M4(MT)4. 1H-NMR and 31P{1H}-NMR, both in solution and in the solid state are presented and interpreted

    Mononuclear Dysprosium Alkoxide and Aryloxide Single‐Molecule Magnets

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-01-08, pub-electronic 2021-03-24, pub-print 2021-05-17Article version: VoRPublication status: PublishedFunder: Engineering and Physical Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000266; Grant(s): EP/R011079/1Funder: European Research Council; Id: http://dx.doi.org/10.13039/501100000781; Grant(s): ADG-786734, CoG-816268Abstract: Recent studies have shown that mononuclear lanthanide (Ln) complexes can be high‐performing single‐molecule magnets (SMMs). Recently, there has been an influx of mononuclear Ln alkoxide and aryloxide SMMs, which have provided the necessary geometrical control to improve SMM properties and to allow the intricate relaxation dynamics of Ln SMMs to be studied in detail. Here non‐aqueous Ln alkoxide and aryloxide chemistry applied to the synthesis of low‐coordinate mononuclear Ln SMMs are reviewed. The focus is on mononuclear DyIII alkoxide and aryloxide SMMs with coordination numbers up to eight, covering synthesis, solid‐state structures and magnetic attributes. Brief overviews are also provided of mononuclear TbIII, HoIII, ErIII and YbIII alkoxide and aryloxide SMMs

    g-engineering in hybrid rotaxanes to create AB and AB2 electron spin systems: EPR spectroscopic studies of weak interactions between dissimilar electron spin qubits

    Get PDF
    Hybrid [2]rotaxanes and pseudorotaxanes are reported where the magnetic interaction between dissimilar spins is controlled to create AB and AB2 electron spin systems,allowing independent control of weakly interacting S =1=2 centers

    Observation of the influence of dipolar and spin frustration effects on the magnetocaloric properties of a trigonal prismatic {Gd-7} molecular nanomagnet

    Get PDF
    Pineda EM, Lorusso G, Zangana KH, et al. Observation of the influence of dipolar and spin frustration effects on the magnetocaloric properties of a trigonal prismatic {Gd-7} molecular nanomagnet. CHEMICAL SCIENCE. 2016;7(8):4891-4895.We report the synthesis and structure of a molecular {Gd-7} cage of the formula ((Pr2NH2)-Pr-i)(6)[Gd-7(mu(3)-OH)(3)(CO3)(6)((O2CBu)-Bu-t)(12)] which has crystallographic C-3h symmetry. Low temperature specific heat and adiabatic demagnetization experiments (the latter achieving temperatures below 100 mK), lead to the observation of the effects of both intramolecular dipolar interactions and geometric spin frustration. The dipolar interaction leads to a massive rearrangement of energy levels such that specific heat and entropy below 2 K are strongly modified while magnetic susceptibility and magnetization above 2 K are not affected. The consequences of these phenomena for low temperature magnetocaloric applications are discussed

    Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties

    Get PDF
    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe2O4) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of ∼106 erg cm−3 can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies
    corecore