95 research outputs found

    Beyond icosahedral symmetry in packings of proteins in spherical shells

    Get PDF
    The formation of quasi-spherical cages from protein building blocks is a remarkable self-assembly process in many natural systems, where a small number of elementary building blocks are assembled to build a highly symmetric icosahedral cage. In turn, this has inspired synthetic biologists to design de novo protein cages. We use simple models, on multiple scales, to investigate the self-assembly of a spherical cage, focusing on the regularity of the packing of protein-like objects on the surface. Using building blocks, which are able to pack with icosahedral symmetry, we examine how stable these highly symmetric structures are to perturbations that may arise from the interplay between flexibility of the interacting blocks and entropic effects. We find that, in the presence of those perturbations, icosahedral packing is not the most stable arrangement for a wide range of parameters; rather disordered structures are found to be the most stable. Our results suggest that (i) many designed, or even natural, protein cages may not be regular in the presence of those perturbations, and (ii) that optimizing those flexibilities can be a possible design strategy to obtain regular synthetic cages with full control over their surface properties.Comment: 8 pages, 5 figure

    Local and macroscopic electrostatic interactions in single α-helices

    Get PDF
    The non-covalent forces that stabilise protein structures are not fully understood. One way to address this is to study equilibria between unfolded states and α-helices in peptides. For these, electrostatic forces are believed to contribute, including interactions between: side chains; the backbone and side chains; and side chains and the helix macrodipole. Here we probe these experimentally using designed peptides. We find that both terminal backbone-side chain and certain side chain-side chain interactions (i.e., local effects between proximal charges, or interatomic contacts) contribute much more to helix stability than side chain-helix macrodipole electrostatics, which are believed to operate at larger distances. This has implications for current descriptions of helix stability, understanding protein folding, and the refinement of force fields for biomolecular modelling and simulations. In addition, it sheds light on the stability of rod-like structures formed by single α-helices that are common in natural proteins including non-muscle myosins

    Computational design of water-soluble α-helical barrels

    Get PDF
    The design of protein sequences that fold into prescribed de novo structures is challenging. General solutions to this problem require geometric descriptions of protein folds and methods to fit sequences to these. The α-helical coiled coils present a promising class of protein for this and offer considerable scope for exploring hitherto unseen structures. For α-helical barrels, which have more than four helices and accessible central channels, many of the possible structures remain unobserved. Here, we combine geometrical considerations, knowledge-based scoring, and atomistic modeling to facilitate the design of new channel-containing α-helical barrels. X-ray crystal structures of the resulting designs match predicted in silico models. Furthermore, the observed channels are chemically defined and have diameters related to oligomer state, which present routes to design protein function

    Unfitness to Plead. Volume 1: Report.

    Get PDF
    This has been produced along with Volume 2: Draft Legislation as a combined document Presented to Parliament pursuant to section 3(2) of the Law Commissions Act 1965 Ordered by the House of Commons to be printed on 12 January 201

    Systematic review of the incidence and clinical risk predictors of atrial fibrillation and permanent pacemaker implantation for bradycardia in Fabry disease

    Get PDF
    Introduction Fabry disease (FD) is an X-linked lysosomal storage disorder caused by enzyme deficiency, leading to glycosphingolipid accumulation. Cardiac accumulation triggers local tissue injury, electrical instability and arrhythmia. Bradyarrhythmia and atrial fibrillation (AF) incidence are reported in up to 16% and 13%, respectively.Objective We conducted a systematic review evaluating AF burden and bradycardia requiring permanent pacemaker (PPM) implantation and report any predictive risk factors identified.Methods We conducted a literature search on studies in adults with FD published from inception to July 2019. Study outcomes included AF or bradycardia requiring therapy. Databases included Embase, Medline, PubMed, Web of Science, CINAHL and Cochrane. The Risk of Bias Agreement tool for Non-Randomised Studies (RoBANS) was utilised to assess bias across key areas.Results 11 studies were included, eight providing data on AF incidence or PPM implantation. Weighted estimate of event rates for AF were 12.2% and 10% for PPM. Age was associated with AF (OR 1.05–1.20 per 1-year increase in age) and a risk factor for PPM implantation (composite OR 1.03). Left ventricular hypertrophy (LVH) was associated with AF and PPM implantation.Conclusion Evidence supporting AF and bradycardia requiring pacemaker implantation is limited to single-centre studies. Incidence is variable and choice of diagnostic modality plays a role in detection rate. Predictors for AF (age, LVH and atrial dilatation) and PPM (age, LVH and PR/QRS interval) were identified but strength of association was low. Incidence of AF and PPM implantation in FD are variably reported with arrhythmia burden likely much higher than previously thought.PROSPERO database CRD42019132045

    ISAMBARD:An open-source computational environment for biomolecular analysis, modelling and design

    Get PDF
    Motivation: The rational design of biomolecules is becoming a reality. However, further computational tools are needed to facilitate and accelerate this, and to make it accessible to more users. Results: Here we introduce ISAMBARD, a tool for structural analysis, model building and rational design of biomolecules. ISAMBARD is open-source, modular, computationally scalable and intuitive to use. These features allow non-experts to explore biomolecular design in silico. ISAMBARD addresses a standing issue in protein design, namely, how to introduce backbone variability in a controlled manner. This is achieved through the generalization of tools for parametric modelling, describing the overall shape of proteins geometrically, and without input from experimentally determined structures. This will allow backbone conformations for entire folds and assemblies not observed in nature to be generated de novo, that is, to access the ‘dark matter of protein-fold space’. We anticipate that ISAMBARD will find broad applications in biomolecular design, biotechnology and synthetic biology. Availability and implementation: A current stable build can be downloaded from the python package index (https://pypi.python.org/pypi/isambard/) with development builds available on GitHub (https://github.com/woolfson-group/) along with documentation, tutorial material and all the scripts used to generate the data described in this paper. Contact:[email protected] or [email protected] Supplementary information:Supplementary data are available at Bioinformatics online

    Clinical utilisation of implantable loop recorders in adults with Fabry disease-a multi-centre snapshot study

    Get PDF
    Fabry disease (FD) is an X-linked deficiency of alpha-galactosidase-A, leading to lysosomal storage of sphingolipids in multiple organs. Myocardial accumulation contributes to arrhythmia and sudden death, the most common cause of FD mortality. Therefore, there is a need for risk stratification and prediction to target device therapy. Implantable loop recorders (ILRs) allow for continual rhythm monitoring for up to 3 years. Here, we performed a retrospective study to evaluate current ILR utilisation in FD and quantify the burden of arrhythmia that was detected, which resulted in a modification of therapy. This was a snapshot assessment of 915 patients with FD across three specialist centres in England during the period between 1 January 2000 and 1 September 2022. In total, 22 (2.4%) patients underwent clinically indicated ILR implantation. The mean implantation age was 50 years and 13 (59%) patients were female. Following implantation, nine (41%) patients underwent arrhythmia detection, requiring intervention (six on ILR and three post-ILR battery depletion). Three patients experienced sustained atrial high-rate episodes and were started on anticoagulation. Three had non-sustained tachyarrhythmia and were started on beta blockers. Post-ILR battery depletion, one suffered complete heart block and two had sustained ventricular tachycardia, all requiring device therapy. Those with arrhythmia had a shorter PR interval on electrocardiography. This study demonstrates that ILR implantation in FD uncovers a high burden of arrhythmia. ILRs are likely to be underutilised in this pro-arrhythmic cohort, perhaps restricted to those with advanced FD cardiomyopathy. Following battery depletion in three patients as mentioned above, greater vigilance and arrhythmia surveillance are advised for those experiencing major arrhythmic events post-ILR monitoring. Further work is required to establish who would benefit most from implantation.</p
    • 

    corecore