187 research outputs found

    Alternative Financial Resources for the Nontraditional Student

    Get PDF

    Late-Holocene land surface change in a coupled social-ecological system, southern Iceland : a cross-scale tephrochronology approach

    Get PDF
    This work is supported by a UK Natural Environment Research Council (NERC) PhD studentship (NE/F00799X/1)The chronological challenge of cross-scale analysis within coupled socio-ecological systems can be met with tephrochronology based on numerous well-dated tephra layers. We illustrate this with an enhanced chronology from SkaftĂĄrtunga, south Iceland that is based on 200 stratigraphic profiles and 2635 individual tephra deposits from 23 different eruptions within the last 1140 years. We present new sediment-accumulation rate based dating of tephra layers from GrĂ­msvötn in AD 1432 ± 5 and AD 1457 ± 5. These and other tephras underpin an analysis of land surface stability across multiple scales. The aggregate regional sediment accumulation records suggest a relatively slow rate of land surface change which can be explained by climate and land use change over the period of human occupation of the island (after AD ∌870), but the spatial patterning of change shows that it is more complex, with landscape scale hysteresis and path dependency making the relationship between climate and land surface instability contingent. An alternative steady state of much higher rates of sediment accumulation is seen in areas below 300 m asl after AD ∌870 despite large variations in climate, with two phases of increased erosion, one related to vegetation change (AD 870–1206) and another related to climate (AD 1597–1918). In areas above 300 m asl there is a short lived increase in erosion and related deposition after settlement (AD ∌870–935) and then relatively little additional change to present. Spatial correlation between rates of sediment accumulation at different profiles decreases rapidly after AD ∌935 from ∌4 km to less than 250 m as the landscape becomes more heterogeneous. These new insights are only possible using high-resolution tephrochronology applied spatially across a landscape, an approach that can be applied to the large areas of the Earth's surface affected by the repeated fallout of cm-scale tephra layers.PostprintPeer reviewe

    Assessing spatial patterns of soil erosion in a high-latitude rangeland

    Get PDF
    Thanks to NSF grant 1202692 for support to RS. NC was supported by a grant from Churchill College, Cambridge. Thanks to Jim Woollet for advice and support. DEMs provided by the Polar Geospatial Center under NSF-OPP awards 1043681, 1559691, and 1542736.High‐latitude areas are experiencing rapid change: we therefore need a better understanding of the processes controlling soil erosion in these environments. We used a spatiotemporal approach to investigate soil erosion in Svalbarðstunga, Iceland (66°N, 15°W), a degraded rangeland. We used three complementary datasets: (a) high‐resolution unmanned‐aerial vehicle imagery collected from 12 sites (total area ~0.75 km2); (b) historical imagery of the same sites; and (c) a simple, spatially‐explicit cellular automata model. Sites were located along a gradient of increasing altitude and distance from the sea, and varied in erosion severity (5–47% eroded). We found that there was no simple relationship between location along the environmental gradient and the spatial characteristics of erosion. Patch‐size frequency distributions lacked a characteristic scale of variation, but followed a power‐law distribution on five of the 12 sites. Present total eroded area is poorly related to current, site‐scale levels of environmental stress, but the number of small erosion patches did reflect site‐level stress. Small (<25 m2) erosion patches clustered near large patches. The model results suggested that the large‐scale patterns observed likely arise from strong, local interactions, which mean that erosion spreads from degraded areas. Our findings suggest that contemporary erosion patterns reflect historical stresses, as well as current environmental conditions. The importance of abiotic processes to the growth of large erosion patches and their relative insensitivity to current environmental conditions makes it likely that the total eroded area will continue to increase, despite a warming climate and reducing levels of grazing pressure.PostprintPeer reviewe

    Tephrochronology, landscape and population: impacts of plague on medieval Iceland

    Get PDF
    This thesis examines the extent to which geomorphological change in sub-arctic landscapes may be driven by rapid declines in population over timescales of decades to centuries. Demographic decline driven by disease in pastoral agricultural systems is expected to alter patterns of land use. Using a chronology with 20 visible dated tephra layers from AD 870 to present, 2625 tephra layers were identified in 200 sediment profiles. Rates of sediment accumulation dated by tephra provide a record of erosion in SkaftĂĄrtunga, South Iceland. The scale of enquiry is that of individual landholdings (5–10 km2) over decades to centuries; in order to tackle questions of resilience and change within coupled socio-ecological systems larger and smaller spatial scales (regions of 400 km2 and individual sediment profiles) and longer and shorter temporal scales (2.6 ka and years to decades) are also considered. The novel application of photogrammetric techniques to recording stratigraphic sections increases the frequency of measurement from tens to hundreds per stratigraphic unit and the resolution from ±2.5 mm to ±1 mm. This technique improves the accuracy of representative measures of sediment accumulation and their use in measuring landscape change. Two little known 15th century AD GrĂ­msvötn tephras are mapped and dated to AD 1432±5 and AD 1457± 5 using sediment accumulation rates. A period of landscape stability from AD 1389–1597 is consistent with reduced grazing pressure due to population declines of more than 30% after plague in AD 1402–1404 and AD 1494. Climatic deterioration from AD 1450-1500 does not increase erosion as much as expected; this may be due to decreased grazing pressure after population decline in the 15th century. Increased erosion from AD 935–1262 is related to woodland clearance and increases in sediment accumulation post AD 1625 are related to climatic cooling during the Little Ice age and the migration of erosion fronts into deep lowland sediments

    Arctic tundra shrubification can obscure increasing levels of soil erosion in NDVI assessments of land cover derived from satellite imagery

    Get PDF
    This research was supported by the St Andrews World Leading Scholarship.Monitoring soil erosion in the Arctic tundra is complicated by the highly fragmentated nature of the landscape and the limited spatial resolution of even high-resolution satellite data. The expansion of shrubs across the Arctic has led to substantial changes in vegetation composition that alter the spectral reflectance and directly affect vegetation indices such as the normalized difference vegetation index (NDVI), which is widely applied for environmental monitoring. This change can mask soil erosion if datasets with too coarse spatial resolutions are used, as increases in NDVI driven by shrub expansion can obscure concurrent increases in barren land cover. Here we created land cover maps from a multispectral uncrewed aerial vehicle (UAV) and land cover survey and assessed satellite imagery from PlanetScope, Sentinel-2 and Landsat-8 for several areas in north-eastern Iceland. Additionally, we used a novel application of the Shannon evenness index (SHEI) to evaluate levels of pixel mixing. Our results show that shrub expansion can lead to spectral confusion, which can obscure soil erosion processes and emphasize the importance of considering spatial resolution when monitoring highly fragmented landscapes. We demonstrate that remote sensing data with a resolution < 3 m greatly improves the amount of information captured in an Icelandic tundra environment. The spatial resolution of Landsat data (30 m) is inadequate for environmental monitoring in our study area. We found that the best platform for monitoring tundra land cover is Sentinel-2 when used in combination with multispectral UAV acquisitions for validation. Our study has the potential to improve environmental monitoring capabilities by introducing the use of SHEI to assess pixel mixing and determine optimal spatial resolutions. This approach combined with comparing remote sensing imagery of different spatial and time scales significantly advances our comprehension of land cover changes, including greening and soil degradation, in the Arctic tundra.Publisher PDFPeer reviewe

    The influence of burial rate on variability in tephra thickness and grain size distribution in Iceland

    Get PDF
    This work was supported by the NERC Doctoral Training Partnership Ph.D. studentship: NE/ L002558/1 to PT.We explore whether the rate at which a tephra deposit is buried influences the variability (thickness and grain size distribution) within the tephra layer subsequently preserved within the stratigraphic record. This has important implications for understanding how processes of soil formation interact with the creation of a volcanic record. To assess the relationship between soil formation and the preservation of tephra layers, the thickness and grain size distribution of the Katla 1918 tephra in Iceland and the rate at which it was buried (inferred from the thickness of the overlying soil) was measured 1620 times at six locations. Tephra layer thickness does not correlate with rate of burial, but the proportion of original deposit retained does, and variations in grain size distribution are correlated with burial rate. Our results indicate that whilst medium term (i.e. years-decades) burial processes may contribute less to tephra layer variability than environmental processes operating immediately after deposition, rapid burial facilitates better preservation of the original fallout characteristics with important implications for the accurate reconstruction of past volcanic eruptions based on tephra layer characteristics. There are two key implications: firstly, sites need to be chosen where surface characteristics minimise the initial alterations of tephra deposits, and secondly sites with rapid burial will produce the best quality data, although workable data can be gathered elsewhere if areas of uncertainty are acknowledged.Publisher PDFPeer reviewe

    State Legislative Response to the Housing Crisis

    Get PDF
    Great public attention has recently been focused on the crisis in housing facing all major urban areas in this country. This article has been prepared to bring close attention to one segment of the hoped for solution-legislative action needed on the state level

    Impact of small-scale vegetation structure on tephra layer preservation.

    Get PDF
    The factors that influence tephra layer taphonomy are poorly understood, but vegetation cover is likely to play a role in the preservation of terrestrial tephra deposits. The impact of vegetation on tephra layer preservation is important because: 1) the morphology of tephra layers could record key characteristics of past land surfaces and 2) vegetation-driven variability in tephra thickness could affect attempts to infer eruption and dispersion parameters. We investigated small- (metre-) scale interactions between vegetation and a thin (<10 cm), recent tephra layer. We conducted surveys of vegetation structure and tephra thickness at two locations which received a similar tephra deposit, but had contrasting vegetation cover (moss vs shrub). The tephra layer was thicker and less variable under shrub cover. Vegetation structure and layer thickness were correlated on the moss site but not under shrub cover, where the canopy reduced the influence of understory vegetation on layer morphology. Our results show that vegetation structure can influence tephra layer thickness on both small and medium (site) scales. These findings suggest that some tephra layers may carry a signal of past vegetation cover. They also have implications for the sampling effort required to reliably estimate the parameters of initial deposits

    Breath Practices for Survivor and Caregiver Stress, Depression, and Post- traumatic Stress Disorder: Connection, Co-regulation, Compassion

    Get PDF
    Does compassion itself benefit the healing process or does the activation of neurophysiological processes, from which the experience of compassion arises, trigger a cascade of physical and psychological changes that support health and well-being? Exploration of the neurological substrates of compassion reveals multiple healing pathways that can be activated by mind-body practices. Furthermore, these pathways affect physical health, emotion regulation, and how we perceive and relate to others. Physiological states affect the capacity for empathy, compassion and understanding. A state of calm alertness based on sympatho-vagal balance may support such high-level prosocial functions. Evidence suggests that polyvagal-informed mind-body practices, particularly Voluntarily Regulated Breathing Practices (VRBPs), efficiently induce such physiological states and that these same states can reduce inflammation and oxidative stress, while improving cardiovascular function, respiratory efficiency, and physical health. Mind-body practices, such as Coherent or Resonant Breathing can balance, strengthen, and increase the adaptive flexibility of stress response systems, potentially counteracting the detrimental effects of excess stress, neglect, and trauma on emotion regulation, physical health, and the ability to experience love and compassion. Research is needed to support integration of mind-body practices into healthcare systems. The methods being used to study mind-body techniques may be further refined by considering the target symptoms, population being studied, specific parameters of each practice, and methods of teaching subjects. The current state of global health calls for treatments that can be delivered to large populations by small numbers of healthcare providers under conditions where resources are limited. Slow gentle Coherent or Resonant Breathing and related mind-body practices are low cost, low risk, easily taught, rapidly effective, scalable, non-stigmatizing, and sustainable. At the convergence of neurophysiological research with contemplative and other mind-body practices, we marvel at the possibilities for relieving emotional and physical suffering as well as improving how we relate to one another

    The application of resilience concepts in palaeoecology

    Get PDF
    The concept of resilience has become increasingly important in ecological and socio-ecological literature. With its focus on the temporal behaviour of ecosystems, palaeoecology has an important role to play in developing a scientific understanding of ecological resilience. We provide a critical review of the ways in which resilience is being addressed by palaeoecologists. We review ~180 papers, identifying the definitions or conceptualisations of ‘resilience’ that they use, and analysing the ways in which palaeoecology is contributing to our understanding of ecological resilience. We identify three key areas for further development. Firstly, the term ‘resilience’ is frequently defined too broadly to be meaningful without further qualification. In particular, palaeoecologists need to distinguish between ‘press’ vs. ‘pulse’ disturbances, and ‘ecological’ vs. ‘engineering’ resilience. Palaeoecologists are well placed to critically assess the extent to which these dichotomies apply in real (rather than theoretical) ecosystems, where climate and other environmental parameters are constantly changing. Secondly, defining a formal ‘response model’ - a statement of the anticipated relationships between proxies, disturbances and resilience properties - can help to clarify arguments, especially inferred causal links, since the difficulty of proving causation is a fundamental limitation of palaeoecology for understanding ecosystem drivers and responses. Thirdly, there is a need for critical analysis of the role of scale in ecosystem resilience. Different palaeoenvironmental proxies are differently able to address the various temporal and spatial scales of ecological change, and these limitations, as well as methodological constraints on inherently noisy proxy data, need to be explored and addressed.PostprintPeer reviewe
    • 

    corecore