103 research outputs found

    On sets of terms with a given intersection type

    Full text link
    We are interested in how much of the structure of a strongly normalizable lambda term is captured by its intersection types and how much all the terms of a given type have in common. In this note we consider the theory BCD (Barendregt, Coppo, and Dezani) of intersection types without the top element. We show: for each strongly normalizable lambda term M, with beta-eta normal form N, there exists an intersection type A such that, in BCD, N is the unique beta-eta normal term of type A. A similar result holds for finite sets of strongly normalizable terms for each intersection type A if the set of all closed terms M such that, in BCD, M has type A, is infinite then, when closed under beta-eta conversion, this set forms an adaquate numeral system for untyped lambda calculus. A number of related results are also proved

    On sets of terms having a given intersection type

    Get PDF
    Working in a variant of the intersection type assignment system of Coppo, Dezani-Ciancaglini and Venneri [1981], we prove several facts about sets of terms having a given intersection type. Our main result is that every strongly normalizing term M admits a *uniqueness typing*, which is a pair (Γ,A)(\Gamma,A) such that 1) ΓM:A\Gamma \vdash M : A 2) ΓN:AM=βηN\Gamma \vdash N : A \Longrightarrow M =_{\beta\eta} N We also discuss several presentations of intersection type algebras, and the corresponding choices of type assignment rules. Moreover, we show that the set of closed terms with a given type is uniformly separable, and, if infinite, forms an adequate numeral system. The proof of this fact uses an internal version of the B\"ohm-out technique, adapted to terms of a given intersection type

    Solution of a Problem of Barendregt on Sensible lambda-Theories

    Full text link
    H is the theory extending β-conversion by identifying all closed unsolvables. Hω is the closure of this theory under the ω-rule (and β-conversion). A long-standing conjecture of H. Barendregt states that the provable equations of Hω form Π11-complete set. Here we prove that conjecture.Comment: 17 page

    Soft Session Types

    Get PDF
    We show how systems of session types can enforce interactions to be bounded for all typable processes. The type system we propose is based on Lafont's soft linear logic and is strongly inspired by recent works about session types as intuitionistic linear logic formulas. Our main result is the existence, for every typable process, of a polynomial bound on the length of any reduction sequence starting from it and on the size of any of its reducts.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407

    Analytic Tableaux for Simple Type Theory and its First-Order Fragment

    Full text link
    We study simple type theory with primitive equality (STT) and its first-order fragment EFO, which restricts equality and quantification to base types but retains lambda abstraction and higher-order variables. As deductive system we employ a cut-free tableau calculus. We consider completeness, compactness, and existence of countable models. We prove these properties for STT with respect to Henkin models and for EFO with respect to standard models. We also show that the tableau system yields a decision procedure for three EFO fragments

    Behavioral Corporate Finance: An Updated Survey

    Full text link
    corecore