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1 Introduction 

Gross and Furst [19851 have introduced a hierarchy of genus-respecting partitions of the 
set of imbeddings of a graph into a closed, oriented surface. This paper contains an 
illustration of a direct calculation of the genus distribution for every member of an infinite 
class of graphs called "closed-end ladders". It also contains an illustration of the use of 
a slightly finer partition in order to obtain the genus distribution for every member of 
another infinite class of graphs, which are called "cobblestone paths" . 

The choice of terminology here reflects the usual sensitivities of topological graph the
ory. For instance, a graph may have multiple adjacencies or self-adjacencies. It is taken to 
be connected, unless one can readily infer otherwise from the immediate context. 

We require that the interior of every face of an imbedding is simply connected, and 
we are concerned exclusively with imbeddings into closed, orientable surfaces. The closed 
orient able surface of genus i is denoted 8t • 

Two imbeddings I : G --+ 8 and g : G --+ T are called equivalent if there exists a 
homeomorphism of pairs 

h : (8,/(G)) --+ (T, g(G)) 

such that hI = g. When we say we are "counting the number of imbeddings," we are 
actually counting the number of equivalence classes of imbeddings. 

The size 01 a lace of an imbedding means the number of edge-traversals needed to 
complete a tour of the face boundary. If both orientations of the same edge appear on the 
boundary of the same face, then that edge is counted twice in a boundary tour. 

It is assumed that the reader is familiar with the elements of topology and graph theory, 
at the level of White [1984]. However, we shall briefly review the relationship between 
rotation systems and graph imbeddings, which is described in Section 6.6 of White [1984] 
in slightly different terminology and somewhat reduced generality. 

A rotation at a vertex is a cyclic permutation of the edges incident on it, in which the 
two ends of a self-adjacency are considered separately. Thus, if a vertex has valence d, 
there are (d - 1)1 possible rotations there. 

A rotation system for a graph is an assignment of a rotation to each vertex. If a graph 
has vertices Vlt ••• , V" of respective valences d1, •• • ,d", then the total number of rotation 
systems is 

" f!(d; - 1)1 
i=1 

A research abstract of Edmonds [1960] called explicit attention to a bijective corre
spondence between the set of imbedding! of a graph G and the set of rotation systems. 
(The correspondence seems to be implicit in the pioneering work of Heffter [1891].) It 
follows that the total number of imbeddings of a graph is the same as its number of r~ 
tation systems. Details for the simplicial case (Le. without self-adjacencies or multiple 
adjacencies) were first given by Youngs [1963]. A generalization to the non-simplicial case 
was developed by Gross and Alpert [19741. 
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The bijective correspondence is realized if one considers a secondary permutation action 
of the rotation system. Let e be an oriented edge from vertex u to vertex v. Of course, 
the primary action takes e onto whatever oriented edge, say d, follows e at vertex v. The 
secondary action takes e to the reverse of d. The orbits of oriented edges in this secondary 
action are taken to be the face boundaries of an imbedding. 
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2 Closed-end ladders 

Imagine that rounded pieces of material are used to close both ends of an n-rung ladder. 
A mathematical model of this object may be obtained by taking the graphical cartesian 
product of the n-vertex path Pn with the complete graph K2 and then doubling both 
its end edges. We call the resulting graph an n-rung closed-end ladder and denote it L" 
herein. Figure 2.1 depicts a closed-end ladder. 

(,+---1 -+---1 _____ I) 

Figure 2.1 The 3-rung closed-end ladder Ls. 

The horizontal edges are said to form "sides" of the ladder. The two curved edges are 
called "ends" or "end-rungs". All vertical edges, including the ones that share vertices 
with end-rungs, are called "mid-rungs." 

Ladder-like graphs played an extensive role in the solution by Ringel and Youngs [1968] 
to the Heawood Map-Coloring Problem (see Ringel [1974]). In fact, we shall use the picture 
method of Gustin [1963], so important to that solution, to specify every rotation system 
- and accordingly, every imbedding - of a ladder graph. We note that a trivalent vertex 
has only two rotations. 

If the vertex is drawn solid, the rotation is counterclockwise. It the vertex is drawn 
hollow, then the rotation ~ clockwise. Figure 2.2 shows a rotation system for a 4-rung 
ladder and its two edge-orbits, one dotted, the other dashed. 

The graph L. haa 8 vertices and 12 edges. The imbedding depicted has two faces (one 
for each edge-orbit). Substitutions on the right side of the Euler polyhedral equation 

2 - 2,,{ = V - E + F 

yields the equation 
2 - 2"{ = 8 - 12 + 2 = - 2 

from which we infer that the imbedding surface associated with Figure 2.2 has genus "{ = 2. 
. If both endpoints of a mid-rung are solid, or if both are hollow, then we call it a matched 

mid-rung. A rung that is either and end-rung or a matched mid-rung is called an mle 
rung. In particular, an end-rung whose endpoints are unmatched is still called an m/e 
rung. A rung that is not an mle rung is called and unmatched mid-rung. Thus, Figure 
2.2 has three mle rungs and three unmatched mid-rungs. 
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Figure 2.2 A rotation system for the 4-rung ladder L. and its two associated edge-orbits. 

The mle rungs are considered to be in a sequence that proceeds from left to right. The 
left end-rung is first and the right end-rung is last. If the endpoints of an end-rung are 
matched, then the mid-rung that shares those end-points occurs next to that end-rung in 
the mle sequence. Another way to say this is that two mle rungs are consecutive mle 
rungs if no matched mid-rungs lie between them. 

Two consecutive mle rungs are said to be evenly separated if the number of interposing 
unmatched rungs is even (including zero). Thus, the left end-rung of Figure 2.2 is evenly 
separated from the doubly hollow matched rung, but the doubly hollow matched rung is 
oddly separated from the right end-rung. Thus, the number of edge-orbits (two) is one 
more than the number of evenly separated pairs (one) of consecutive matched rungs. We 
generalize this observation about Figure 2.2. 

Lemma 2.1 The number 0/ edge-orbits induced by a rotation system lor a dosed-end 
ladder L", equals one plu.. the number 0/ evenl" separated pairs 0/ consecutive mle rungs. 

Proof: Suppose that the total number of matched mid-rungs is m. Let us begin by 
considering any rotation system of the ladder L", such that every rung is matched, so that 
there are m + 1 evenly separated pairs of m/e rungs. It is not difficult to verify that such 
a rotation system has m + 2 edge-orbits, and that three different edge-orbits are incident 
on each vertex. (The aid of a few drawings is highly recommended.) 

The rest of this proof is concerned with the effect of inserting a string of unmatched 
mid-rungs between two ml e rungs. 

Tracing the orbit lines in Figure 2.3 is sufficient to demonstrate that whenever a 2-
string of similar unmatched mid-rungs is inserted between two arbitrary rungs, there is no 
effect on the number of edge-orbits. 
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Figure 2.3 The two possible 2-strings of similar unmatched mid-rungs and their local 
edge-orbit structure. 

It follows that when we insert strings of unmatched mid-rungs into the ladder Lm, we 
may as well assume that consecutive unmatched mid-rungs are dissimilar. Let's call this 
an alternating string 0/ unmatched mid-rung,. 

Tracing the edge-orbits in Figure 2.4 indicates that inserting an alternating 3-string 
of unmatched mid-rungs between any two kinda of rungs has the same effed as inserting 
only the middle rung of the string. 

By combining the observation about alternating 3-strings with the observation about 2-
strings of similar mle rungs, we may infer that the effect of inserting any odd-length string 
of unmatched mid-rungs is the same as inserting one unmatched mid-rung. Similarly, we 
may infer that the effect of inserting any even-length string of unmatched mid-rungs is the 
same as inserting either a 2-string of dissimilar unmatched mid-rungs or no rungs at all. 

In order to insert a. single unmatched mid-rung between two mle rungs, we proceed in 
two stages. First, we insert a mle rung, which increases the number of edge-orbits by one. 
We observe that each endpoint of the new rung is incident on three distinct edge-orbits. 
Thus, when the rotation at one end of the new rung is reversed (Le. this is stage two), its 
three edge-orbits become one orbit, for a reduction by two. The net effect of inserting the 
unma.tched mid-rung is a decrease of one edge-orbit. 

Another edge-tracing argument confirr:ns that inserting an alternating pair of un
matched mid-rungs between two consecutive mle rungs causes no net change in the number 
of edge orbits. 

QED 

Lemma 2.1 enables us to complete the derivation of the genus distribution of ladders 
by straightforward enumerative techniques. 
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Figure 2.4 The equivalence between inserting an alternating 3-string of unmatched 
mid-rungs and inserting only the middle rung of the string. 

We employ two auxiliary expressions in what follows. One is s(n, m, k), which stands 
for the number of rotation systema for the ladder Ln that have m m/e mid-rungs, of which 
k pairs are evenly separated. The other is b(p, q, r), which stands for the number of ways 
to put p identical balls into q distinct boxes, so that exactly r boxes have an even number 
of balls. 

To obtain a combinatorial expression for b(p,q,r), we imagine that one ball is placed 
into each of the q - r odd boxes and that the remaining p - q + r balls are then distributed 
in pairs into the q boxes. Thus, 

or, equivalently, 

b(p, q, r) = { o( q ) ((,-q+r)/H9- 1) 
q-r ,-1 

if p - q + r is odd, 

otherwise 

{ 
0 if p - q + r is odd, 

b(p, q, r) = (!) ((,-q+;~1Hq-1) otherwise (1) 

In order to analyze ,,(n, m, k) we imagine that the n - m unmatched non-end rungs 
are to be inserted into the m + 1 distinct boxes formed along the ladder Ln by the m 
unmatched rungs. Clearly we have 

s(n, m, k) = 2nb(n - m, m + I, k) (2) 

If n = k mod 2, then (n-m) - (m+ 1) +k is odd, from which it follows that s(m, n, k) = 
O. However, if n ~ k mod 2, then we combine equations 1 and 2 to obtain 

n(m + 1) ((n + k -1)/2) 
s(n,m,k) =2 k m (3) 
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We now define f(n, k) to be the number of imbeddings of the ladder graph L" that 
have k faces. According to Lemma 2.1 we have 

" f(n, k) = l: 8(8, m, k - 1) (4) 
",=0 

Using equation 3, we transform equation 4 into 

f(n,k) = 2" t (m ~ 1) ((n + k - 2)/2) 
",=0 k 1 m 

(5) 

or, equivalently 

f(n,k) = 2" t (m ~ 1) ((n + k)/2 - 1) 
",=0 k 1 m 

(6) 

Using the combinatorial identity 

(7) 

we convert equation 6 into 

(8) 

which separates, in turn, into the form 

f(n, k) = 2" L m = 0" ( m ) ((n + k)/2 - 1) + 2" f: ( m ) ((n + k)/2 - 1) (9) 
k - 1 m ",::0 k - 2 m 

The combinatorial identity 

enables us to determine from equation 9 that 

Therefore, we may infer 

(11) 

We now reuse the combinatorial identity 7 to obtaine 

(12) 
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The combinatorial identity 

implies that 

(p - 1) = (p)!!. 
q -1 q q 

(
(n + k)/2 - 1) = ((n + k)/2) 2(k - 1) 

k - 2 k - 1 (n + k) 

This allows us to simplify equation 12 to conclude 

f(n, k) = 2(3n-.l:)/2 ((n + k)/2) (1 + 2k - 2) 
k-l n+k 

whenever n = k mod 2. Otherwise, f(n, k) = O. 

(13) 

In order to convert the face-count formula in equation 13 into a genus distribution 
formula, we use the Euler polyhedral equation in the form 

Thus, when the genus of the imbedding surface is equal to the number i, the number of 
faces is 

k = n + 2 - 2i 

Let gi(Ln) denote the number of imbeddings of the ladder Ln in the surfaces Si. It follows 
that 

g,(Ln) = f(n, n + 2 - 2i) (14) 

When we apply equation 13 to the right-side of equation 14, we obtain the equation 

.(L ) = [3n-(n+2-2')1/2 ([n + (n + 2 - 2i)]/2) ( 2(n + 2 - 2i) - 2) 
g, n 2 (') 1 + ( 2 2 ') n + 2 - 21 - 1 n + n + - 1 

This simplifies routinely to 

( ) 
_ n-1+i ( n + 1 - i ) 2n + 2 - 3i 

g, L,. - 2 , ' 
n + 1 - 21 n + 1 - I 

and, since (4~') = (:), we have 

{ 
2 (n+1-') 2n+2-34 r '< L!!±.lJ 

g,(Ln) = on-1+, , n+1-, lor 1 - 2 
otherwise 

(15) 

The following table shows the genus distribution for small values of nand i. 
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go 91 gl gs g. 

L1 2 2 0 0 0 

L2 4 12 0 0 0 

L3 8 40 16 0 0 

L. 16 ll2 128 0 0 

Ls 32 288 576 128 0 



3 Cobblestone paths 

Suppose that every edge of the n-vertex path p" is doubled, and that a self-adjacency is 
then added at each end. Figure 3.1 shows how the resulting graph might be drawn. It 
seems appropriate to dub this graph a cobblestone path We denote it J" herein. 

Figure 3.1 The cobblestone path J •. 

For any connected graph G, and for i = 0,1, ... , let gi(G) be the number of imbeddings 
of G into the closed orientable surface Si. We may regard the genus distribution for G as 
a vector 

(go(G), gdG), g2(G), ... ) 

Obviously, only finitely many entries are non-zero. 
Our objective is to calculate all the numbers g.(J"). for i = 0,1, ... , and for n = 1,2 .... 

Sometimes we abbreviate gi(J") by gi," herein. 
The recursion construction assures that we have a cobblestone path J"-1 positioned 

horizontally, as in Figure 3.1. The subsequent cobblestone path J" is obtained by first 
imposing a new vertex at the middle of the right end loop and then attaching a new right 
end loop at the new vertex. 

To establish a recursion formula, it is necessary to distinguish between two kinds of 
imbeddings of the cobblestone path J"-I, depending on whether the two occurrences of 
the right end edge lie on two distinct faces or on the same face. For i = 0,1, ... and for 
n = 1,2, ... we define d;(J"). sometimes abbreviated d;,", to be the number of imbeddings 
of J" in S. such that the two occurrences of the right-end edge lie on distinct faces, and 
we define sdJ"), sometimes abbreviated Si,,, , to be the number of imbeddings of J" in Sj 

10 



such that the two occurrences of the right-end edge both lie on the same face. Obviously, 
we have the equation 

gi(Jn ) = d;(J,,) + 8i(Jn ) 

For each cobblestone path In, we may form vectors 

The basis step for the recursion is the following observation 

(do,1t d1,b d2,l ... ) = (4,0,0, ... ) 

(SO,1I Sl,l, 82,1,''') = (0,2,0, ... ) 

(16) 

(17) 

(18) 

In constructing the cobblestone path J" from its predecessor J,,-l, we are adding a new 
vertex of valence 4. Since (4 -I)! = 6, it follows that J" h~ six times as many imbeddings 
~ J"-l' In fact, the cobblestone path J" h~ 6n imbeddings, for n = 1,2, .... 

Our viewpoint is that each individual imbedding of J,,-l gives rise to six imbeddings 
of J", which occurs by way of the intermediate graph J:_ 1 • By J:- 1 we mean the result 
of inserting a new vertex at the midpoint of this right-end loop of the cobblestone path 
J,,-l' The six d~hed arcs in Figure 3.2 illustrate the six ways the new right-end loop for 
J" can be attached at the new vertex of J,,-l' 

..... ------__ ;\~/J 
.............. -.::::. --
---->;~ .......... 

- I 
'. - - - - ( .!' ' "__ _ .... J 

Figure 3.2 The six ways of attaching a new right-end loop. 

Now consider any imbedding into the surface Sj of the cobblestone path J,,-l' If both 
occurrences of the right-end loop of J,,-1 are on the same face, then every one of the six 
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ways of attaching a new right-end loop can be realized in the surface Si, that is, without 
attaching an extra handle to Sj. Obviously, the two occurrences of the new right-end loop 
appear on different faces of the resulting imbedding of I n • However, if the two occurrences 
of the right-end loop of I n - 1 are on different faces of its imbedding in Sj, then only the 
four monogon-generating insertions of the new loop are in Sj. The two insertions in which 
the new right-end loops runs from one face to another require the addition of a handle 
from one face to the other. In this case, both occurrences of the new right-end loop lie on 
the same face of the new imbedding. Thus, we have established the simultaneous recursion 
formulae 

~(Jn) = 4d.;(Jn-d + 6Si(Jn-d 

Sj(Jn) = 2~-I(Jn-d 

The solution of the recurrence begins with a substitution of 

(19) 

(20) 

2~-I(Jn-2) for sj(Jn-d into equation 20 which yields the simplified recurrence relation 

(21) 

By reversing the recursion, we may calculate values 

(22) 

This artifice enables u.s to define 

00 

Dj(x) = L ~(Jn)xn 
i::::O 

in preparation for an infinite summation on equation 21, as follows. 

00 00 00 

L ~,,,zn = 4 L £4,,,_I%n + 12 L £4-1,n-2 Z " 
,,::::2 n::::2 n=2 

00 00 

= 4x L £4,"_1 X"-1 + 12z2 L £4_1,n_2 Xn -
2 

n=2 n=2 

Therefore, 

and, consequently 
(23) 

From equations 17 and 22, we know that d;,1 = 0 and d;,o = 0, for all i ~ 1. Thus we 
may simplify equation 23 to the linear recursion 

12z2 ( ) i >_ 1 Dj(z) = ( ) Di-1 x, for 
1 - 4x 

(24) 
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We will now proceed to establish the value of the polynomial Do(x). From the Jordan 
curve theorem, we know that SO," = 0, for n ~ 1. Accordingly, we may conclude from 
equation 19 that 

Since do.o = 1, we infer that 
1 

Do(x) = 1 - 4x 

We easily combine equations 24 and 25, to obtain the result 

The coefficient of xr in the power series expansion of (1 - ax)-- is 

(25) 

(26) 

(For instance, see Tucker [1980, p. 841 or Liu [1968, p. 311.) It follows that the coefficient 
of X"-2i in the power series expansion of (1 - 4x)-(Hl) is 

((n - 2i) + (i:- 1) - 1) 4"-2. = (n - i,) 4"-2i 
n - 2, n - 2, 

Thus, the coefficient of x" in the power series expansion of Di(X) is 

( ') (') (') . . n-, . . n-s "n-, 
12' . 4"-2, . ,= 3' ·4"-' . ,= 3'4"-' . , 

n - 2, n - 2s , 

That is, 

d;(J,,) = 3'· 4"-i . (n ~ '),fori ~ 0 and n ~ 0 

We now recall equation 20 

and infer that 

"i(J,,) = 2· 3i- 1
• 4"-i . (; ~:) 

Therefore, from equation 16, we conclude 

The following table contains some of the small values. 
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90 91 92 Total 

J1 4 2 0 6 

J-z 16 20 0 36 

J! 64 128 24 216 

J. 256 704 336 1296 
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4 Statistical Patterns 

A non-negative sequence {kn } is said to be unimodal if there exists at least one integer M 
such that 

pn-l ~ Pn for all n ~ M, and 

Pn ~ Pn+l for all n ~ M 

Although this includes non-decreasing sequences that eventually level off and non-increasing 
sequences that start out level, a typical unimodal sequence first rises and then falls. 

A sequence {kn } is called strongly unimodal if its convolution with any unimodal se
quence is unimodal. Keilson and Gerber [19711 have proved that {kn } is strongly unimodal 
if and only if 

k~ ~ kn+lkn - 1, for all n 

or equivalently, if and only if {kn } is unimodal and 

whenever these ratios are defined. 

Theorem 4.1 The gentu distribution lor closed-end ladders is strongly unimodal. 

Proof: For 1 ~ i ~ l n;1 J, we have proved in Section 2 that 

(
n + 1 - i) 2n + 2 - 3i 

g,(Ln) = 2n-'+I. l' , n + -, 

It follows that the ratio g,(Ln)/ g,(Ln-d has the value 

n + 3 - 2; n + 2 - 2; 2n + 2 - 3i 
2·-~-, n+l-; 2n + 5 - 3; 

Each of the three quotienta is a non-increasing function of the variable i. Thus, the next 
ratio gi+l(Ln)/gi(L,,) cannot be greater. 

QED 

Theorem ".~ The gentU distribution for a cobblestone path is strongly unimodal. 

Proof: First, transform the equation 

gi(J,,) = 3'4"-i + 2.3,-14,,-, (; ~ :) 

so that the right-hand side has only one term. 

. 1 . (n - i) 3n - 4i + 3 
g,(J,,) = 3'- 4"-' ; n _ 2; + 1 
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Therefore, the ratio gi(Jn)/gi-dJn) equals 

3 n - 2i + 2 n - 2i + 3 3n - 4i + 3 -. . 
4 n - i + 1 , 3n - 4i + 7 

For 1 ~ i ~ l j-J, the three variable quotients are non-increasing. Thus, the next ratio 
gi+t{Jn)/gi-l(Jn) cannot be greater. 

QED 
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