147 research outputs found

    Liquid-Solid Transition of Hard Spheres Under Gravity

    Full text link
    We investigate the liquid-solid transition of two dimensional hard spheres in the presence of gravity. We determine the transition temperature and the fraction of particles in the solid regime as a function of temperature via Even-Driven molecular dynamics simulations and compare them with the theoretical predictions. We then examine the configurational statistics of a vibrating bed from the view point of the liquid-solid transition by explicitly determining the transition temperature and the effective temperature, T, of the bed, and present a relation between T and the vibration strength.Comment: 14 total pages, 4 figure

    A high-quality genome and comparison of short- versus long-read transcriptome of the palaearctic duck Aythya fuligula (tufted duck)

    Get PDF
    Background: The tufted duck is a non-model organism that experiences high mortality in highly pathogenic avian influenza outbreaks. It belongs to the same bird family (Anatidae) as the mallard, one of the best-studied natural hosts of low-pathogenic avian influenza viruses. Studies in non-model bird species are crucial to disentangle the role of the host response in avian influenza virus infection in the natural reservoir. Such endeavour requires a high-quality genome assembly and transcriptome. Findings: This study presents the first high-quality, chromosome-level reference genome assembly of the tufted duck using the Vertebrate Genomes Project pipeline. We sequenced RNA (complementary DNA) from brain, ileum, lung, ovary, spleen, and testis using Illumina short-read and Pacific Biosciences long-read sequencing platforms, which were used for annotation. We found 34 autosomes plus Z and W sex chromosomes in the curated genome assembly, with 99.6% of the sequence assigned to chromosomes. Functional annotation revealed 14,099 protein-coding genes that generate 111,934 transcripts, which implies a mean of 7.9 isoforms per gene. We also identified 246 small RNA families. Conclusions: This annotated genome contributes to continuing research into the host response in avian influenza virus infections in a natural reservoir. Our findings from a comparison between short-read and long -read reference transcriptomics contribute to a deeper understanding of these competing options. In this study, both technologies complemented each other. We expect this annotation to be a foundation for further comparative and evolutionary genomic studies, including many waterfowl relatives with differing susceptibilities to avian influenza viruses

    The Maestro (Mro) Gene Is Dispensable for Normal Sexual Development and Fertility in Mice

    Get PDF
    The mammalian gonad arises as a bipotential primordium from which a testis or ovary develops depending on the chromosomal sex of the individual. We have previously used DNA microarrays to screen for novel genes controlling the developmental fate of the indifferent embryonic mouse gonad. Maestro (Mro), which encodes a HEAT-repeat protein, was originally identified as a gene exhibiting sexually dimorphic expression during mouse gonad development. Wholemount in situ hybridisation analysis revealed Mro to be expressed in the embryonic male gonad from approximately 11.5 days post coitum, prior to overt sexual differentiation. No significant expression was detected in female gonads at the same developmental stage. In order to address its physiological function, we have generated mice lacking Maestro using gene targeting. Male and female mice homozygous for a Mro null allele are viable and fertile. We examined gonad development in homozygous male embryos in detail and observed no differences when compared to wild-type controls. Immunohistochemical analysis of homozygous mutant testes of adult mice revealed no overt abnormalities. Expression profiling using DNA microarrays also indicated no significant differences between homozygote embryonic male gonads and controls. We conclude that Maestro is dispensable for normal male sexual development and fertility in laboratory mice; however, the Mro locus itself does have utility as a site for insertion of transgenes for future studies in the fields of sexual development and Sertoli cell function

    An improved pig reference genome sequence to enable pig genetics and genomics research.

    Get PDF
    BACKGROUND: The domestic pig (Sus scrofa) is important both as a food source and as a biomedical model given its similarity in size, anatomy, physiology, metabolism, pathology, and pharmacology to humans. The draft reference genome (Sscrofa10.2) of a purebred Duroc female pig established using older clone-based sequencing methods was incomplete, and unresolved redundancies, short-range order and orientation errors, and associated misassembled genes limited its utility. RESULTS: We present 2 annotated highly contiguous chromosome-level genome assemblies created with more recent long-read technologies and a whole-genome shotgun strategy, 1 for the same Duroc female (Sscrofa11.1) and 1 for an outbred, composite-breed male (USMARCv1.0). Both assemblies are of substantially higher (>90-fold) continuity and accuracy than Sscrofa10.2. CONCLUSIONS: These highly contiguous assemblies plus annotation of a further 11 short-read assemblies provide an unprecedented view of the genetic make-up of this important agricultural and biomedical model species. We propose that the improved Duroc assembly (Sscrofa11.1) become the reference genome for genomic research in pigs

    Loss of Mitogen-Activated Protein Kinase Kinase Kinase 4 (MAP3K4) Reveals a Requirement for MAPK Signalling in Mouse Sex Determination

    Get PDF
    The boygirl (byg) mouse mutant reveals that MAP3K4-mediated signaling is necessary for normal SRY expression and testis specification in the developing mouse gonad

    Study Protocol - Accurate assessment of kidney function in Indigenous Australians: aims and methods of the eGFR Study

    Get PDF
    Background: There is an overwhelming burden of cardiovascular disease, type 2 diabetes and chronic kidney disease among Indigenous Australians. In this high risk population, it is vital that we are able to measure accurately kidney function. Glomerular filtration rate is the best overall marker of kidney function. However, differences in body build and body composition between Indigenous and non-Indigenous Australians suggest that creatinine-based estimates of glomerular filtration rate derived for European populations may not be appropriate for Indigenous Australians. The burden of kidney disease is borne disproportionately by Indigenous Australians in central and northern Australia, and there is significant heterogeneity in body build and composition within and amongst these groups. This heterogeneity might differentially affect the accuracy of estimation of glomerular filtration rate between different Indigenous groups. By assessing kidney function in Indigenous Australians from Northern Queensland, Northern Territory and Western Australia, we aim to determine a validated and practical measure of glomerular filtration rate suitable for use in all Indigenous Australians

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved

    An empirical study of inflation distortions to EVA

    No full text

    "Target Debt ratios: The impact of equity mis-pricing" "Target Debt ratios: differential rates of adjustment and market timing"

    No full text
    Abstract Previous studies disagree on the rate of speed with which firms adjust their leverage toward a target leverage. We argue that a portion of this variance is caused by two factors. First, firms face a 'hard' boundary when over levered. This is due to the present value of bankruptcy costs increasing at an increasing rate. These firms will adjust toward a target debt ratio more rapidly than under levered firms which face a 'soft' boundary. Second, if a firm's equity is mis-priced, the cost of issuing equity may be reduced/increased. Our empirical findings support the above conjectures. The findings are robust to various means of measuring leverage and mis-pricing. "Target Debt ratios: differential rates of adjustment and market timing" Abstract Previous studies disagree on the rate of speed with which firms adjust their leverage toward a target leverage. We argue that a portion of this variance is caused by two factors. First, firms face a 'hard' boundary when over levered. This is due to the present value of bankruptcy costs increasing at an increasing rate. These firms will adjust toward a target debt ratio more rapidly than under levered firms which face a 'soft' boundary. Second, if a firm's equity is mis-priced, the cost of issuing equity may be reduced/increased. Our empirical findings support the above conjectures. The findings are robust to various means of measuring leverage and mis-pricing
    • …
    corecore