941 research outputs found

    Inter-Personal and Critical-Thinking Capabilities in Those about to Enter Qualified Social Work: A Six-Centre Study

    Get PDF
    The ‘process’ of intervention is understood to be fundamental to social work—evident in, for example, the literature on reflexivity. Little work, though, has focused on the detailed excavation of the cognitive processes of reasoning in decision making. This is widely recognised as requiring considerable analytic and critical abilities. Although this is long established, its importance is contemporarily apparent at the policy level from the rationale underlying current initiatives such as Frontline. However, it is also long understood that the reasoning capabilities underlying these processes cannot be considered in isolation from the inter-personal–emotional, encapsulated in a long-term theoretical concern for both Heart and Head. Furthermore, terms like ‘capability’ or ‘proficiency’ in professional qualification imply some standard to be reached in practice. This invites measurement. This novel study seeks to bring together three dimensions of the (i) measurement of (ii) the inter-personal–emotional and (iii) critical thinking—measurement of key facets of both Head and Heart. A six-centre, six-university collaboration, it focuses on those at a crucial point: where individuals are about to enter qualified practice. The findings show they score highly on most inter-personal measures (with room for improvement), but show huge variability in critical-thinking capabilities. The implications of this are discussed

    Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste

    Get PDF
    One of the technologies being tested at Ames Research Center as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste to reduce volume, remove water and render a biologically stable and safe product. Studies at Kennedy Space Center have focused on the efficacy of the heat melt compaction process for killing microorganisms in waste and specific compacter operation protocols, i.e., time and temperature, required to achieve a sterile, stable product. The work reported here includes a controlled study to examine the survival and potential re-growth of specific microorganisms over a 6-month period of storage after heating and compaction. Before heating and compaction, ersatz solid wastes were inoculated with Bacillus amyloliquefaciens and Rhodotorula mucilaginosa, previously isolated from recovered space shuttle mission food and packaging waste. Compacted HMC tiles were sampled for microbiological analysis at time points between 0 and 180 days of storage in a controlled environment chamber. In addition, biological indicator strips containing spores of Bacillus atrophaeus and Ceo bacillus stearothermophilus were imbedded in trash to assess the efficacy of the HMC process to achieve sterilization. Analysis of several tiles compacted at 180 C for times of 40 minutes to over 2 hours detected organisms in all tile samples with the exception of one exposed to 180 C for approximately 2 hours. Neither of the inoculated organisms was recovered, and the biological indicator strips were negative for growth in all tiles indicating at least local sterilization of tile areas. The findings suggest that minimum time/temperature combination is required for complete sterilization. Microbial analysis of tiles processed at lower temperatures from 130 C-150 C at varying times will be discussed, as well as analysis of the bacteria and fungi present on the compactor hardware as a result of exposure to the waste and the surrounding environment. The two organisms inoculated into the waste were among those isolated and identified from the HMC surfaces indicating the possibility of cross contamination

    Structural and wetting properties of nature\u27s finest silks (order Embioptera)

    Get PDF
    Insects from the order Embioptera (webspinners) spin silk fibres which are less than 200 nm in diameter. In this work, we characterized and compared the diameters of single silk fibres from nine species—Antipaluria urichi, Pararhagadochir trinitatis, Saussurembia calypso, Diradius vandykei, Aposthonia ceylonica, Haploembia solieri, H. tarsalis, Oligotoma nigra and O. saundersii. Silk from seven of these species have not been previously quantified. Our studies cover five of the 10 named taxonomic families and represent about one third of the known taxonomic family-level diversity in the order Embioptera. Naturally spun silk varied in diameter from 43.6 ± 1.7 nm for D. vandykei to 122.4 ± 3.2 nm for An. urichi. Mean fibre diameter did not correlate with adult female body length. Fibre diameter is more similar in closely related species than in more distantly related species. Field observations indicated that silk appears shiny and smooth when exposed to rainwater. We therefore measured contact angles to learn more about interactions between silk and water. Higher contact angles were measured for silks with wider fibre diameter and higher quantity of hydrophobic amino acids. High static contact angles (ranging up to 122° ± 3° for An. urichi) indicated that silken sheets spun by four arboreal, webspinner species were hydrophobic. A second contact angle measurement made on a previously wetted patch of silk resulted in a lower contact angle (average difference was greater than 27°) for all four species. Our studies suggest that silk fibres which had been previously exposed to water exhibited irreversible changes in hydrophobicity and water adhesion properties. Our results are in alignment with the ‘super-pinning’ site hypothesis by Yarger and co-workers to describe the hydrophobic, yet water adhesive, properties exhibited by webspinner silk fibres. The physical and chemical insights gained here may inform the synthesis and development of smaller diameter silk fibres with unique water adhesion properties

    The morphology of the ejecta in Supernova 1987A: a study over time and wavelength

    Get PDF
    We present a study of the morphology of the ejecta in Supernova 1987A based on images and spectra from the HST as well as integral field spectroscopy from VLT/SINFONI. The HST observations were obtained between 1994 - 2011 and primarily probe the outer hydrogen-rich zones of the ejecta. The SINFONI observations were obtained in 2005 and 2011 and instead probe the [Si I]/[Fe II] emission from the inner regions. We find a strong temporal evolution of the morphology in the HST images, from a roughly elliptical shape before ~5,000 days, to a more irregular, edge-brightened morphology thereafter. This transition is a natural consequence of the change in the dominant energy source powering the ejecta, from radioactive decay before ~5,000 days to X-ray input from the circumstellar interaction thereafter. The [Si I]/[Fe II] images display a more uniform morphology, which may be due to a remaining significant contribution from radioactivity in the inner ejecta and the higher abundance of these elements in the core. Both the H-alpha and the [Si I]/[Fe II] line profiles show that the ejecta are distributed fairly close to the plane of the inner circumstellar ring, which is assumed to define the rotational axis of the progenitor. The H-alpha emission extends to higher velocities than [Si I]/[Fe II] as expected. There is no clear symmetry axis for all the emission and we are unable to model the ejecta distribution with a simple ellipsoid model with a uniform distribution of dust. Instead, we find that the emission is concentrated to clumps and that the emission is distributed somewhat closer to the ring in the north than in the south. This north-south asymmetry may be partially explained by dust absorption. We compare our results with explosion models and find some qualitative agreement, but note that the observations show a higher degree of large-scale asymmetry.Comment: Accepted for publication in Ap

    Ammonia Emission, Manure Nutrients and Egg Production of Laying Hens Fed Distiller Dried Grain Diets

    Get PDF
    A USDA Natural Resources Conservation Service, Conservation Innovation Grant project coordinated by the United Egg Producers (UEP) conducted concurrent demonstrations in Iowa and Pennsylvania (PA) at commercial laying hen facilities. The goal was to document manure nutrient and gas emission improvements through the use of dried distiller’s grain with solubles (DDGS) diets and/or other dietary modifications while maintaining or improving hen productivity. Results of the PA trial are presented here. Diets containing 10% corn DDGS with (D+P) or without (D) the probiotic Provalen™ were compared to a corn-soybean based control diet (CON). The isocaloric, amino acid balanced diets were fed to three groups of 39,800 Lohmann hens in one house. Hens were 20-65 wk of age with each diet provided to 2 of 6 rows of stacked cages with manure belts (six decks high). Feed intake, water consumption, hen body weight (BW), egg production (EP,) egg case weight, mortality, feed cost (FC), and egg income (EI) were provided weekly by the cooperating egg company. Replicated monthly data, including egg weight (EW), albumen height (AH), Haugh units (HU), yolk color (YC), shell strength (SS) and shell thickness (ST), were determined from eggs collected from six 4-cage sections of hens on each diet. Replicated monthly samples of hen manure (fresh and from storage) were analyzed for moisture and major nutrients. Ammonia (NH3) gas measurements utilized a non-steady state flux chamber method coupled with photoacoustic infrared gas analyzer. There was no clear trend in the magnitude of NH3 emissions relative to the diets within the hen house as measured on the manure belt. At 32 and 36 wks of age, NH3 emissions were significantly (P \u3c 0.10) higher in D while D+P and CON were lower and similar. At 48 and 52 wks, NH3 emissions from D were similar to D+P and significantly lower than CON. Emission rate from belt manure averaged 0.42 ±0.025 g bird-1 d-1 for all treatments and dates. There was no significant impact of diet on BW, EW, HU, SS, or ST (P =0.10 to 0.66), however, CON hens had lower EP, AH, and YC compared to D and D+P hens (P=0.05). Fresh manure total phosphorus (P2O5) was higher for CON samples (P \u3c 0.05) while other major agronomic nutrients and moisture were not significantly different among treatments. Stored CON manure samples had increased moisture and NH4-N compared to those of D and D+P treatments (P \u3c 0.10). Weekly EI minus FC averaged 6,146,6,146, 6,215, and $6,209 for the CON, D, and D+P diets, respectively

    Lowest Open Channels, Bound States, and Narrow Resonances of Dipositronium

    Full text link
    The constraints imposed by symmetry on the open channels of dipositronium has been studied, and the symmetry-adapted lowest open channel of each quantum state has been identified. Based on this study, the existence of two more 0^+ bound states has been theoretically confirmed, and a 0^+ narrow resonance has been predicted. A variational calculation has been performed to evaluate the critical strength of the repulsive interaction . Two 0^- states are found to have their critical strengths very close to 1, they are considered as candidates of new narrow resonances or loosely bound states .Comment: 10 pages, 0 figure

    Very long optical path-length from a compact multi-pass cell

    Full text link
    The multiple-pass optical cell is an important tool for laser absorption spectroscopy and its many applications. For most practical applications, such as trace-gas detection, a compact and robust design is essential. Here we report an investigation into a multi-pass cell design based on a pair of cylindrical mirrors, with a particular focus on achieving very long optical paths. We demonstrate a path-length of 50.31 m in a cell with 40 mm diameter mirrors spaced 88.9 mm apart - a 3-fold increase over the previously reported longest path-length obtained with this type of cell configuration. We characterize the mechanical stability of the cell and describe the practical conditions necessary to achieve very long path-lengths

    Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste

    Get PDF
    One of the technologies being tested at Ames Research Center as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste to reduce volume, remove water and render a biologically stable and safe product. Studies at Kennedy Space Center have focused on the efficacy of the heat melt compaction process for killing microorganisms in waste and specific compacter operation protocols, i.e., time and temperature required to achieve a sterile, stable product. The work. reported here includes a controlled study to examine the survival and potential re-growth of specific microorganisms over a 6-month period of storage after heating and compaction. Before heating and compaction, ersatz solid wastes were inoculated with Bacillus amyloliquefaciens and Rhodotorula mucilaginosa, previously isolated from recovered space shuttle mission food and packaging waste. Compacted HMC tiles were sampled for microbiological analysis at time points between 0 and 180 days of storage in a controlled environment chamber. In addition, biological indicator strips containing spores of Bacillus atrophaeus and Geobacillus stearothermophilus were imbedded in trash to assess the efficacy of the HMC process to achieve sterilization. Analysis of several tiles compacted at 180deg C for times of 40 minutes to over 2 hours detected organisms in all tile samples with the exception of one exposed to 180deg C for approximately 2 hours. Neither of the inoculated organisms was recovered, and the biological indicator strips were negative for growth in all tiles indicating at least local sterilization of tile areas. The findings suggest that minimum time/temperature combination is required for complete sterilization. Microbial analysis of tiles processed at lower temperatures from 130deg C-150deg C at varying times will be discussed, as well as analysis of the bacteria and fungi present on the compactor hardware as a result of exposure to the waste and the surrounding environment. The two organisms inoculated into the waste were among those isolated and identified from the HMC surfaces indicating the possibility of cross contamination

    Quantifying the anisotropy and tortuosity of permeable pathways in clay-rich mudstones using models based on X-ray tomography

    Get PDF
    The permeability of shales is important, because it controls where oil and gas resources can migrate to and where in the Earth hydrocarbons are ultimately stored. Shales have a well-known anisotropic directional permeability that is inherited from the depositional layering of sedimentary laminations, where the highest permeability is measured parallel to laminations and the lowest permeability is perpendicular to laminations. We combine state of the art laboratory permeability experiments with high-resolution X-ray computed tomography and for the first time can quantify the three-dimensional interconnected pathways through a rock that define the anisotropic behaviour of shales. Experiments record a physical anisotropy in permeability of one to two orders of magnitude. Two- and three-dimensional analyses of micro- and nano-scale X-ray computed tomography illuminate the interconnected pathways through the porous/permeable phases in shales. The tortuosity factor quantifies the apparent decrease in diffusive transport resulting from convolutions of the flow paths through porous media and predicts that the directional anisotropy is fundamentally controlled by the bulk rock mineral geometry. Understanding the mineral-scale control on permeability will allow for better estimations of the extent of recoverable reserves in shale gas plays globally
    • …
    corecore