12 research outputs found

    Conference Workshop Proceedings: Developing a Scholarship of Teaching and Learning Portfolio in Applied Horticulture

    Get PDF
    Preparing faculty to conduct quality teaching is critical to maximize student learning and the educational experience. As increased attention to faculty effectiveness and effect of their teaching program is observed, the more important it becomes for faculty to engage in the scholarship of teaching and learning (SoTL). The workshop “Developing a scholarship of teaching and learning portfolio in applied horticulture” was conducted at the 2022 American Society for Horticultural Science conference in Chicago, IL, USA, and featured a panel of teaching scholars who provided insight and guidance for developing, enhancing, evaluating, and promoting SoTL for both traditional classroom teachers and extension educators

    High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial.

    Get PDF
    BACKGROUND: High-sensitivity cardiac troponin assays permit use of lower thresholds for the diagnosis of myocardial infarction, but whether this improves clinical outcomes is unknown. We aimed to determine whether the introduction of a high-sensitivity cardiac troponin I (hs-cTnI) assay with a sex-specific 99th centile diagnostic threshold would reduce subsequent myocardial infarction or cardiovascular death in patients with suspected acute coronary syndrome. METHODS: In this stepped-wedge, cluster-randomised controlled trial across ten secondary or tertiary care hospitals in Scotland, we evaluated the implementation of an hs-cTnI assay in consecutive patients who had been admitted to the hospitals' emergency departments with suspected acute coronary syndrome. Patients were eligible for inclusion if they presented with suspected acute coronary syndrome and had paired cardiac troponin measurements from the standard care and trial assays. During a validation phase of 6-12 months, results from the hs-cTnI assay were concealed from the attending clinician, and a contemporary cardiac troponin I (cTnI) assay was used to guide care. Hospitals were randomly allocated to early (n=5 hospitals) or late (n=5 hospitals) implementation, in which the high-sensitivity assay and sex-specific 99th centile diagnostic threshold was introduced immediately after the 6-month validation phase or was deferred for a further 6 months. Patients reclassified by the high-sensitivity assay were defined as those with an increased hs-cTnI concentration in whom cTnI concentrations were below the diagnostic threshold on the contemporary assay. The primary outcome was subsequent myocardial infarction or death from cardiovascular causes at 1 year after initial presentation. Outcomes were compared in patients reclassified by the high-sensitivity assay before and after its implementation by use of an adjusted generalised linear mixed model. This trial is registered with ClinicalTrials.gov, number NCT01852123. FINDINGS: Between June 10, 2013, and March 3, 2016, we enrolled 48 282 consecutive patients (61 [SD 17] years, 47% women) of whom 10 360 (21%) patients had cTnI concentrations greater than those of the 99th centile of the normal range of values, who were identified by the contemporary assay or the high-sensitivity assay. The high-sensitivity assay reclassified 1771 (17%) of 10 360 patients with myocardial injury or infarction who were not identified by the contemporary assay. In those reclassified, subsequent myocardial infarction or cardiovascular death within 1 year occurred in 105 (15%) of 720 patients in the validation phase and 131 (12%) of 1051 patients in the implementation phase (adjusted odds ratio for implementation vs validation phase 1·10, 95% CI 0·75 to 1·61; p=0·620). INTERPRETATION: Use of a high-sensitivity assay prompted reclassification of 1771 (17%) of 10 360 patients with myocardial injury or infarction, but was not associated with a lower subsequent incidence of myocardial infarction or cardiovascular death at 1 year. Our findings question whether the diagnostic threshold for myocardial infarction should be based on the 99th centile derived from a normal reference population. FUNDING: The British Heart Foundation

    Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1

    Get PDF
    Perennial woody species, such as poplar (Populus spp.) must acquire necessary heavy metals like zinc (Zn) while avoiding potential toxicity. Poplar contains genes with sequence homology to genes HMA4 and PCS1 from other species which are involved in heavy metal regulation. While basic genomic conservation exists, poplar does not have a hyperaccumulating phenotype. Poplar has a common indicator phenotype in which heavy metal accumulation is proportional to environmental concentrations but excesses are prevented. Phenotype is partly affected by regulation of HMA4 and PCS1 transcriptional abundance. Wild-type poplar down-regulates several transcripts in its Zn-interacting pathway at high Zn levels. Also, overexpressed PtHMA4 and PtPCS1 genes result in varying Zn phenotypes in poplar; specifically, there is a doubling of Zn accumulation in leaf tissues in an overexpressed PtPCS1 line. The genomic complement and regulation of poplar highlighted in this study supports a role of HMA4 and PCS1 in Zn regulation dictating its phenotype. These genes can be altered in poplar to change its interaction with Zn. However, other poplar genes in the surrounding pathway may maintain the phenotype by inhibiting drastic changes in heavy metal accumulation with a single gene transformation

    The Effect of Light Intensity and Temperature on Flowering and Morphology of Potted Red Firespike

    No full text
    Red firespike (Odontonema strictum) is a tropical flowering plant that was selected as a potential flowering potted plant for its attractive red floral spikes. The objective of this study was to evaluate how light intensity, photoperiod, and temperature affect the growth and flowering of firespike. In Experiment 1, plants were grown under 0%, 45%, or 65% shade and two photoperiod conditions; long-day (LD = ≥14 h) and short-day (SD = 9 h), for 16 weeks. Plants grown under 45% shade + LD were tallest at 35.9 cm, while plants grown under 65% shade + SD were shortest at 22.8 cm. During the finishing stage, the number of inflorescences increased when plants were grown under 45% shade + SD, 45% shade + LD, and no shade, with 6, 7, and 9 inflorescences, respectively. In addition, the first open flower was observed in the 0% shade group (control) 92 days after starting the experiment. The time to first open flower increased when the plants were grown under 65% shade, either under SD or LD. In Experiment 2, plants were grown in controlled environment growth chambers with average daily temperatures of 15, 25, or 35 °C and an irradiance of 200 µmol·m−2·s−1 for 9 h per day. Plants grown at 25 °C were the tallest and had the largest leaf area. Plants grown at 15 and 35 °C had 28% and 22% less leaf area, respectively. The average number of inflorescences in plants grown at 25 °C was 1.6, while no inflorescence development was observed in plants grown at 15 or 35 °C by the termination of the experiment. There were no differences between plant growth index or branch number in response to temperature. Under the experimental conditions tested, the most rapid and uniform flowering of firespike occurred when plants were grown under no shade or at 25 °C

    Nitrogen Fertigation Rate and Foliar Urea Spray Affect Plant Growth, Nitrogen, and Carbohydrate Compositions of Encore Azalea ‘Chiffon’ Grown in Alternative Containers

    No full text
    The objective of this study was to investigate the plant vegetative growth, flower production, nitrogen (N) concentration, and carbohydrate compositions of Encore® azalea ‘Chiffon’ when fertigated with five N rates—0, 5, 10, 15, and 20 mM N—and grown in two types of containers, a black plastic and a biodegradable container, during one growing season. Foliar urea of 3% was applied to half of the plants in late fall to investigate its effect on plant N and carbohydrate concentrations. The paper biocontainers resulted in superior plant growth, increased plant size, dry weights, root length and surface area compared with the plastic containers with N rates of 10, 15, and 20 mM. The paper biocontainers also increased N uptake and carbohydrate concentrations mainly by increasing plant biomass. High N rates of 10 to 20 mM combined with urea spray and biocontainers generally resulted in the highest plant N concentrations. Foliar urea application in late fall tended to increase plant N concentration but decreased carbohydrates, including starch, glucose, fructose, and sucrose, to varying degrees, likely due to increased N assimilation. Fall foliar urea spray can be effective in improving the N status of azalea plants without affecting plant biomass

    Plant-based FRET biosensor discriminates environmental zinc levels

    No full text
    Summary Heavy metal accumulation in the environment poses great risks to flora and fauna. However, monitoring sites prone to accumulation poses scale and economic challenges. In this study, we present and test a method for monitoring these sites using fluorescent resonance energy transfer (FRET) change in response to zinc (Zn) accumulation in plants as a proxy for environmental health. We modified a plant Zn transport protein by adding flanking fluorescent proteins (FPs) and deploying the construct into two different species. In Arabidopsis thaliana, FRET was monitored by a confocal microscope and had a 1.4-fold increase in intensity as the metal concentration increased. This led to a 16.7% overall error-rate when discriminating between a control (1 lM Zn) and high (10 mM Zn) treatment after 96 h. The second host plant (Populus tremula · Populu salba) also had greater FRET values (1.3-fold increase) when exposed to the higher concentration of Zn, while overall error-rates were greater at 22.4%. These results indicate that as plants accumulate Zn, protein conformational changes occur in response to Zn causing differing interaction between FPs. This results in greater FRET values when exposed to greater amounts of Zn and monitored with appropriate light sources and filters. We also demonstrate how this construct can be moved into different host plants effectively including one tree species. This chimeric protein potentially offers a method for monitoring large areas of land for Zn accumulation, is transferable among species, and could be modified to monitor other specific heavy metals that pose environmental risks

    Complementing model species with model clades.

    No full text
    Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant Tree of Life continues to improve. The intersection of these two research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a “model clade”. These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis thaliana and the family Brassicaceae. We promote the utility of such a “model clade” and make suggestions for building global networks to support future studies in the model order Brassicales
    corecore