618 research outputs found
Learning to laugh : children and being human in early modern thought
This essay explores the construction of the human in early modern English thought, and uses discussions of the nature and use of laughter as a distinguishing feature of humanity from classical arguments as well as early modern ones. Using these classical, reformed English discussions of education and of the nature of children reveals an anxiety about the status of the child. Laughing appropriately - using tile mind and not merely the body - is a key feature of being human, and as such, the child's lack of "true' laughter reveals that child's status to be never always-already human. "Human' is a created rather than merely a natural status
Using GIS for spatial analysis of rectal lesions in the human body
Abstract Background Geographic Information Systems (GIS) have been used in a wide variety of applications to integrate data and explore the spatial relationship of geographic features. Traditionally this has referred to features on the surface of the earth. However, it is possible to apply GIS in medicine, at the scale of the human body, to visualize and analyze anatomic and clinical features. In the present study we used GIS to examine the findings of transanal endoscopic microsurgery (TEM), a minimally-invasive procedure to locate and remove both benign and cancerous lesions of the rectum. Our purpose was to determine whether anatomic features of the human rectum and clinical findings at the time of surgery could be rendered in a GIS and spatially analyzed for their relationship to clinical outcomes. Results Maps of rectal topology were developed in two and three dimensions. These maps highlight anatomic features of the rectum and the location of lesions found on TEM. Spatial analysis demonstrated a significant relationship between anatomic location of the lesion and procedural failure. Conclusion This study demonstrates the feasibility of rendering anatomical locations and clinical events in a GIS and its value in clinical research. This allows the visualization and spatial analysis of clinical and pathologic features, increasing our awareness of the relationship between anatomic features and clinical outcomes as well as enhancing our understanding and management of this disease process. </p
Recommended from our members
Disrupted CXCR2 Signaling in Oligodendroglia Lineage Cells Enhances Myelin Repair in a Viral Model of Multiple Sclerosis.
CXCR2 is a chemokine receptor expressed on oligodendroglia that has been implicated in the pathogenesis of neuroinflammatory demyelinating diseases as well as enhancement of the migration, proliferation, and myelin production by oligodendroglia. Using an inducible proteolipid protein (Plp) promoter-driven Cre-loxP recombination system, we were able to assess how timed ablation of Cxcr2 in oligodendroglia affected disease following intracranial infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV). Generation of Plp-Cre-ER(T)::Cxcr2flox/flox transgenic mice (termed Cxcr2-CKO mice) allows for Cxcr2 to be silenced in oligodendrocytes in adult mice following treatment with tamoxifen. Ablation of oligodendroglia Cxcr2 did not influence clinical severity in response to intracranial infection with JHMV. Infiltration of activated T cells or myeloid cells into the central nervous system (CNS) was not affected, nor was the ability to control viral infection. In addition, the severity of demyelination was similar between tamoxifen-treated mice and vehicle-treated controls. Notably, deletion of Cxcr2 resulted in increased remyelination, as assessed by g-ratio (the ratio of the inner axonal diameter to the total outer fiber diameter) calculation, compared to that in vehicle-treated control mice. Collectively, our findings argue that CXCR2 signaling in oligodendroglia is dispensable with regard to contributing to neuroinflammation, but its deletion enhances remyelination in a preclinical model of the human demyelinating disease multiple sclerosis (MS).IMPORTANCE Signaling through the chemokine receptor CXCR2 in oligodendroglia is important for developmental myelination in rodents, while chemical inhibition or nonspecific genetic deletion of CXCR2 appears to augment myelin repair in animal models of the human demyelinating disease multiple sclerosis (MS). To better understand the biology of CXCR2 signaling on oligodendroglia, we generated transgenic mice in which Cxcr2 is selectively ablated in oligodendroglia upon treatment with tamoxifen. Using a viral model of neuroinflammation and demyelination, we demonstrate that genetic silencing of CXCR2 on oligodendroglia did not affect clinical disease, neuroinflammation, or demyelination, yet there was increased remyelination. These findings support and extend previous findings suggesting that targeting CXCR2 may offer a therapeutic avenue for enhancing remyelination in patients with demyelinating diseases
Racial Residential Segregation and Race Differences in Ideal Cardiovascular Health among Young Men
Background: Race disparities in cardiovascular disease (CVD) related morbidity and mortality are evident among men. While previous studies show health in young adulthood and racial residential segregation (RRS) are important factors for CVD risk, these factors have not been widely studied in male populations. We sought to examine race differences in ideal cardiovascular health (CVH) among young men (ages 24–34) and whether RRS influenced this association. Methods: We used cross-sectional data from young men who participated in Wave IV (2008) of the National Longitudinal Survey of Adolescent to Adult Health (N = 5080). The dichotomous outcome, achieving ideal CVH, was defined as having ≥4 of the American Heart Association’s Life’s Simple 7 targets. Race (Black/White) and RRS (proportion of White residents in census tract) were the independent variables. Descriptive and multivariate analyses were conducted. Results: Young Black men had lower odds of achieving ideal CVH (OR = 0.67, 95% CI = 0.49, 0.92) than young White men. However, RRS did not have a significant effect on race differences in ideal CVH until the proportion of White residents was ≥55%. Conclusions: Among young Black and White men, RRS is an important factor to consider when seeking to understand CVH and reduce future cardiovascular risk
Fabrication of a Large, Ordered, Three-Dimensional Nanocup Array
Metallic nanocups provide a unique method for redirecting scattered light by creating magnetic plasmon responses at optical frequencies. Despite considerable development of nanocup fabrication processes, simultaneously achieving accurate control over the placement, orientation, and geometry of nanocups has remained a significant challenge. Here we present a technique for fabricating large, periodically ordered arrays of uniformly oriented three-dimensional gold nanocups for manipulating light at subwavelength scales. Nanoimprint lithography, soft lithography, and shadow evaporation were used to fabricate nanocups onto the tips of polydimethylsiloxane nanopillars with precise control over the shapes and optical properties of asymmetric nanocups
Entanglement in a Solid State Spin Ensemble
Entanglement is the quintessential quantum phenomenon and a necessary
ingredient in most emerging quantum technologies, including quantum repeaters,
quantum information processing (QIP) and the strongest forms of quantum
cryptography. Spin ensembles, such as those in liquid state nuclear magnetic
resonance, have been powerful in the development of quantum control methods,
however, these demonstrations contained no entanglement and ultimately
constitute classical simulations of quantum algorithms. Here we report the
on-demand generation of entanglement between an ensemble of electron and
nuclear spins in isotopically engineered phosphorus-doped silicon. We combined
high field/low temperature electron spin resonance (3.4 T, 2.9 K) with
hyperpolarisation of the 31P nuclear spin to obtain an initial state of
sufficient purity to create a non-classical, inseparable state. The state was
verified using density matrix tomography based on geometric phase gates, and
had a fidelity of 98% compared with the ideal state at this field and
temperature. The entanglement operation was performed simultaneously, with high
fidelity, to 10^10 spin pairs, and represents an essential requirement of a
silicon-based quantum information processor.Comment: 4 pages, 3 figures plus supporting information of 4 pages, 1 figure
v2: Updated reference
High-Resolution Chandra X-Ray Imaging And Spectroscopy Of The Sigma Orionis Cluster
We present results of a 90 ks Chandra X-ray observation of the young sigma Orionis cluster ( age similar to 3 Myr) obtained with the HETGS. We use the high-resolution grating spectrum and moderate-resolution CCD spectrum of the massive central star sigma Ori AB (O9.5 V + B0.5 V) to test wind shock theories of X-ray emission and also analyze the high spatial resolution zero-order ACIS-S image of the central cluster region. Chandra detected 42 X-ray sources on the primary CCD (ACIS-S3). All but five have near-IR or optical counterparts and about one-fourth are variable. Notable high-mass stellar detections are sigma Ori AB, the magnetic B star sigma Ori E, and the B5 V binary HD 37525. Most of the other detections have properties consistent with lower mass K- or M-type stars. We present the first X-ray spectrum of the unusual infrared source IRS 1, located approximate to 3 \u27\u27 north of sigma Ori AB. Its X-ray properties and elongated mid-IR morphology suggest that it is an embedded low-mass T Tauri star whose disk/envelope is being photoevaporated by sigma Ori AB. We focus on the radiative wind shock interpretation of the soft luminous X-ray emission from sigma Ori AB, but also consider possible alternatives including magnetically confined wind shocks and colliding wind shocks. Its emission lines show no significant asymmetries or centroid shifts and are moderately broadened to HWHM approximate to 264 km s(-1), or one-fourth the terminal wind speed. Forbidden lines in He-like ions are formally undetected, implying strong UV suppression. The Mg XI triplet forms in the wind acceleration zone within one stellar radius above the surface. These X-ray properties are consistent in several respects with the predictions of radiative wind shock theory for an optically thin wind, but explaining the narrow line widths presents a challenge to the theory
Participant acceptability of digital footprint data collection strategies:an exemplar approach to participant engagement and involvement in the ALSPAC birth cohort study
INTRODUCTION: Digital footprint records – the tracks and traces amassed by individuals as a result of their interactions with the internet, digital devices and services – can provide ecologically valid data on individual behaviours. These could enhance longitudinal population study databanks; but few UK longitudinal studies are attempting this. When using novel sources of data, study managers must engage with participants in order to develop ethical data processing frameworks that facilitate data sharing whilst safeguarding participant interests. OBJECTIVES: This paper aims to summarise the participant involvement approach used by the ALSPAC birth cohort study to inform the development of a framework for using linked participant digital footprint data, and provide an exemplar for other data linkage infrastructures. METHODS: The paper synthesises five qualitative forms of inquiry. Thematic analysis was used to code transcripts for common themes in relation to conditions associated with the acceptability of sharing digital footprint data for longitudinal research. RESULTS: We identified six themes: participant understanding; sensitivity of location data; concerns for third parties; clarity on data granularity; mechanisms of data sharing and consent; and trustworthiness of the organisation. For cohort members to consider the sharing of digital footprint data acceptable, they require information about the value, validity and risks; control over sharing elements of the data they consider sensitive; appropriate mechanisms to authorise or object to their records being used; and trust in the organisation. CONCLUSION: Realising the potential for using digital footprint records within longitudinal research will be subject to ensuring that this use of personal data is acceptable; and that rigorously controlled population data science benefiting the public good is distinguishable from the misuse and lack of personal control of similar data within other settings. Participant co-development informs the ethical-governance framework for these novel linkages in a manner which is acceptable and does not undermine the role of the trusted data custodian
Centerscope
Centerscope, formerly Scope, was published by the Boston University Medical Center "to communicate the concern of the Medical Center for the development and maintenance of improved health care in contemporary society.
- …