2,164 research outputs found
Avicennia germinans (L.) Stearn
https://thekeep.eiu.edu/herbarium_specimens_byname/18926/thumbnail.jp
Avicennia germinans (L.) Stearn
https://thekeep.eiu.edu/herbarium_specimens_byname/18926/thumbnail.jp
Toward a Model for Fisheries Social Impact Assessment
This paper presents a model for Fisheries Social Impact Assessment (SIA) that lays the groundwork for development
of fisheries-focused, quantitative social assessments with a clear conceptual model. The usefulness of current fisheries SIA’s has been called into question by some
as incompatible with approaches taken by fisheries biologists and economists when assessing potential effects of management actions. Our model’s approach is closer to the economists’ and biologists’ assessments and is therefore more useful for Fishery Management Council members. The paper was developed by anthropologists initially brought together in 2004 for an SIA Modeling
Workshop by the National Marine Fisheries Service, NOAA. Opinions and conclusions expressed or implied are solely
those of the authors and do not necessarily reflect the views or policy of the National Marine Fisheries Service, NOAA
The Imprint of Gravitational Waves on the Cosmic Microwave Background
Long-wavelength gravitational waves can induce significant temperature
anisotropy in the cosmic microwave background. Distinguishing this from
anisotropy induced by energy density fluctuations is critical for testing
inflationary cosmology and theories of large-scale structure formation. We
describe full radiative transport calculations of the two contributions and
show that they differ dramatically at angular scales below a few degrees. We
show how anisotropy experiments probing large- and small-angular scales can
combine to distinguish the imprint due to gravitational waves.Comment: 11 pages, Penn Preprint-UPR-
Adaptive nonlinear polynomial neural networks for control of boundary layer/structural interaction
The acoustic pressures developed in a boundary layer can interact with an aircraft panel to induce significant vibration in the panel. Such vibration is undesirable due to the aerodynamic drag and structure-borne cabin noises that result. The overall objective of this work is to develop effective and practical feedback control strategies for actively reducing this flow-induced structural vibration. This report describes the results of initial evaluations using polynomial, neural network-based, feedback control to reduce flow induced vibration in aircraft panels due to turbulent boundary layer/structural interaction. Computer simulations are used to develop and analyze feedback control strategies to reduce vibration in a beam as a first step. The key differences between this work and that going on elsewhere are as follows: that turbulent and transitional boundary layers represent broadband excitation and thus present a more complex stochastic control scenario than that of narrow band (e.g., laminar boundary layer) excitation; and secondly, that the proposed controller structures are adaptive nonlinear infinite impulse response (IIR) polynomial neural network, as opposed to the traditional adaptive linear finite impulse response (FIR) filters used in most studies to date. The controllers implemented in this study achieved vibration attenuation of 27 to 60 dB depending on the type of boundary layer established by laminar, turbulent, and intermittent laminar-to-turbulent transitional flows. Application of multi-input, multi-output, adaptive, nonlinear feedback control of vibration in aircraft panels based on polynomial neural networks appears to be feasible today. Plans are outlined for Phase 2 of this study, which will include extending the theoretical investigation conducted in Phase 2 and verifying the results in a series of laboratory experiments involving both bum and plate models
A Concept for Airborne Precision Spacing for Dependent Parallel Approaches
The Airborne Precision Spacing concept of operations has been previously developed to support the precise delivery of aircraft landing successively on the same runway. The high-precision and consistent delivery of inter-aircraft spacing allows for increased runway throughput and the use of energy-efficient arrivals routes such as Continuous Descent Arrivals and Optimized Profile Descents. This paper describes an extension to the Airborne Precision Spacing concept to enable dependent parallel approach operations where the spacing aircraft must manage their in-trail spacing from a leading aircraft on approach to the same runway and spacing from an aircraft on approach to a parallel runway. Functionality for supporting automation is discussed as well as procedures for pilots and controllers. An analysis is performed to identify the required information and a new ADS-B report is proposed to support these information needs. Finally, several scenarios are described in detail
CBR Anisotropy from Primordial Gravitational Waves in Two-Component Inflationary Cosmology
We examine stochastic temperature fluctuations of the cosmic background
radiation (CBR) arising via the Sachs-Wolfe effect from gravitational wave
perturbations produced in the early universe. We consider spatially flat,
perturbed FRW models that begin with an inflationary phase, followed by a mixed
phase containing both radiation and dust. The scale factor during the mixed
phase takes the form , where are
constants. During the mixed phase the universe smoothly transforms from being
radiation to dust dominated. We find analytic expressions for the graviton mode
function during the mixed phase in terms of spheroidal wave functions. This
mode function is used to find an analytic expression for the multipole moments
of the two-point angular correlation function
for the CBR anisotropy. The analytic expression for the multipole
moments is written in terms of two integrals, which are evaluated numerically.
The results are compared to multipoles calculated for models that are {\it
completely} dust dominated at last-scattering. We find that the multipoles
of the CBR temperature perturbations for are
significantly larger for a universe that contains both radiation and dust at
last-scattering. We compare our results with recent, similar numerical work and
find good agreement. The spheroidal wave functions may have applications to
other problems of cosmological interest.Comment: 28 pgs + 6 postscript figures, RevTe
Novel Role for the Golgi Membrane Protein TMEM165 in Control of Migration and Invasion for Breast Carcinoma
The TMEM165 gene encodes for a multiple pass membrane protein localized in the Golgi that has been linked to congenital disorders of glycosylation. The TMEM165 protein is a putative ion transporter that regulates H+/Ca++/Mn++ homeostasis and pH in the Golgi. Previously, we identified TMEM165 as a potential biomarker for breast carcinoma in a glycoproteomic study using late stage invasive ductal carcinoma tissues with patient-matched adjacent normal tissues. The TMEM165 protein was not detected in non-malignant matched breast tissues and was detected in invasive ductal breast carcinoma tissues by mass spectrometry. Our hypothesis is that the TMEM165 protein confers a growth advantage to breast cancer. In this preliminary study we have investigated the expression of TMEM165 in earlier stage invasive ductal carcinoma and ductal carcinoma in situ cases. We created a CRISPR/Cas9 knockout of TMEM165 in the human invasive breast cancer cell line MDAMB231. Our results indicate that removal of TMEM165 in these cells results in a significant reduction of cell migration, tumor growth, and tumor vascularization in vivo. Furthermore, we find that TMEM165 expression alters the glycosylation of breast cancer cells and these changes promote the invasion and growth of breast cancer by altering the expression levels of key glycoproteins involved in regulation of the epithelial to mesenchymal transition such as E-cadherin. These studies illustrate new potential functions for this Golgi membrane protein in the control of breast cancer growth and invasion
- …