96 research outputs found

    Cross-Cultural Comparisons with Japan

    Get PDF
    Paper by Richard K. Beardsle

    CODE-2 : moored array and large-scale data report

    Get PDF
    The Coastal Ocean Dynamics Experiment (CODE) was undertaken to identify and study the important dynamical processes which govern the wind-driven motion of coastal water over the continental shelf. The initial effort in this multi-year, multi-institutional research program was to obtain high-quality data sets of all the relevant physical variables needed to construct accurate kinematic and dynamic descriptions of the response of shelf water to strong wind forcing in the 2 to 10 day band. A series of two small-scale, densely- instrumented field experiments of approximately four months duration (called CODE-1 and CODE-2) were designed to explore and to determine the kinematics and momentum and heat balances of the local wind-driven flow over a region of the northern California shelf which is characterized by both relatively simple bottom topography and large wind stress events in both winter and summer. A more lightly instrumented, long -term, large-scale component was designed to help separate the local wind-driven response in the region of the small-scale experiments from motions generated either offshore by the California Current system or in some distant region along the coast, and also to help determine the seasonal cycles of the atmospheric forcing, water structure, and coastal currents over the northern California shelf. The first small-scale experiment (CODE-1) was conducted between April and August, 1981 as a pilot study in "which primary emphasis was placed on characterizing the wind-driven "signal" and the "noise" from which this signal must be extracted. In particular, CODE-1 was designed to identify the key features of the circulation and its variability over the northern California shelf and to determine the important time and length scales of the wind-driven response. The second small-scale experiment (CODE-2) was conducted between April and August, 1982 and was designed to sample more carefully the mesoscale horizonta1 variability observed in CODE-1. This report presents a basic description of the moored array data and some other Eulerian data collected during CODE-2. A brief description of the CODE-2 field program is presented first, followed by a description of the common data analysis procedures used to produce the various data sets presented here. Then basic descriptions of the following data sets are presented: (a) the coastal and moored meteorological measurements, (b) the moored current measurements, (c) array plots of the surface wind stress and near-surface current measurements, (d) the moored temperature and conductivity observations, (e) the bottom pressure measurements, and (f) the wind and adjusted coastal sea level observations obtained as part of the CODE-2 large-scale component.This work has been supported by the National Science Foundation

    Silly Questions and Arguments for the Implicit, Cinematic Narrator

    Get PDF
    My chapter aims to advance the debate on a problem often raised by philosophers who are skeptical of implied narrators in movies. This is the concern that positing such elusive narrators gives rise to absurd imaginings (Gaut 2004: 242; Carroll 2006: 179-180). Friends of the implied cinematic narrator reply that the questions critics raise about the workings of the implied cinematic narrator are "silly ones" to ask. I examine how the "absurd imaginings" problem arises for all the central arguments for the elusive cinematic narrator and discuss why the questions critics pose about this narrator are legitimate ones to ask

    Hydrogen Epoch of Reionization Array (HERA)

    Get PDF
    The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to measure 21 cm emission from the primordial intergalactic medium (IGM) throughout cosmic reionization (z=6−12z=6-12), and to explore earlier epochs of our Cosmic Dawn (z∼30z\sim30). During these epochs, early stars and black holes heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is designed to characterize the evolution of the 21 cm power spectrum to constrain the timing and morphology of reionization, the properties of the first galaxies, the evolution of large-scale structure, and the early sources of heating. The full HERA instrument will be a 350-element interferometer in South Africa consisting of 14-m parabolic dishes observing from 50 to 250 MHz. Currently, 19 dishes have been deployed on site and the next 18 are under construction. HERA has been designated as an SKA Precursor instrument. In this paper, we summarize HERA's scientific context and provide forecasts for its key science results. After reviewing the current state of the art in foreground mitigation, we use the delay-spectrum technique to motivate high-level performance requirements for the HERA instrument. Next, we present the HERA instrument design, along with the subsystem specifications that ensure that HERA meets its performance requirements. Finally, we summarize the schedule and status of the project. We conclude by suggesting that, given the realities of foreground contamination, current-generation 21 cm instruments are approaching their sensitivity limits. HERA is designed to bring both the sensitivity and the precision to deliver its primary science on the basis of proven foreground filtering techniques, while developing new subtraction techniques to unlock new capabilities. The result will be a major step toward realizing the widely recognized scientific potential of 21 cm cosmology.Comment: 26 pages, 24 figures, 2 table

    HI 21cm Cosmology and the Bi-spectrum: Closure Diagnostics in Massively Redundant Interferometric Arrays

    Full text link
    New massively redundant low frequency arrays allow for a novel investigation of closure relations in interferometry. We employ commissioning data from the Hydrogen Epoch of Reionization Array to investigate closure quantities in this densely packed grid array of 14m antennas operating at 100 MHz to 200 MHz. We investigate techniques that utilize closure phase spectra for redundant triads to estimate departures from redundancy for redundant baseline visibilities. We find a median absolute deviation from redundancy in closure phase across the observed frequency range of about 4.5deg. This value translates into a non-redundancy per visibility phase of about 2.6deg, using prototype electronics. The median absolute deviations from redundancy decrease with longer baselines. We show that closure phase spectra can be used to identify ill-behaved antennas in the array, independent of calibration. We investigate the temporal behavior of closure spectra. The Allan variance increases after a one minute stride time, due to passage of the sky through the primary beam of the transit telescope. However, the closure spectra repeat to well within the noise per measurement at corresponding local sidereal times (LST) from day to day. In future papers in this series we will develop the technique of using closure phase spectra in the search for the HI 21cm signal from cosmic reionization.Comment: 32 pages. 11 figures. Accepted to Radio Scienc

    Low frequency observations of linearly polarized structures in the interstellar medium near the south Galactic pole

    Get PDF
    This is an author-created, un-copyedited version of an article published in The Astrophysical Journal. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.3847/0004-637X/830/1/38We present deep polarimetric observations at 154 MHz with the Murchison Widefield Array (MWA), covering 625 deg^2 centered on RA=0 h, Dec=-27 deg. The sensitivity available in our deep observations allows an in-band, frequency-dependent analysis of polarized structure for the first time at long wavelengths. Our analysis suggests that the polarized structures are dominated by intrinsic emission but may also have a foreground Faraday screen component. At these wavelengths, the compactness of the MWA baseline distribution provides excellent snapshot sensitivity to large-scale structure. The observations are sensitive to diffuse polarized emission at ~54' resolution with a sensitivity of 5.9 mJy beam^-1 and compact polarized sources at ~2.4' resolution with a sensitivity of 2.3 mJy beam^-1 for a subset (400 deg^2) of this field. The sensitivity allows the effect of ionospheric Faraday rotation to be spatially and temporally measured directly from the diffuse polarized background. Our observations reveal large-scale structures (~1 deg - 8 deg in extent) in linear polarization clearly detectable in ~2 minute snapshots, which would remain undetectable by interferometers with minimum baseline lengths >110 m at 154 MHz. The brightness temperature of these structures is on average 4 K in polarized intensity, peaking at 11 K. Rotation measure synthesis reveals that the structures have Faraday depths ranging from -2 rad m^-2 to 10 rad m^-2 with a large fraction peaking at ~+1 rad m^-2. We estimate a distance of 51+/-20 pc to the polarized emission based on measurements of the in-field pulsar J2330-2005. We detect four extragalactic linearly polarized point sources within the field in our compact source survey. Based on the known polarized source population at 1.4 GHz and non-detections at 154 MHz, we estimate an upper limit on the depolarization ratio of 0.08 from 1.4 GHz to 154 MHz.Peer reviewedFinal Accepted Versio

    Optimizing Sparse RFI Prediction using Deep Learning

    Get PDF
    Radio Frequency Interference (RFI) is an ever-present limiting factor among radio telescopes even in the most remote observing locations. When looking to retain the maximum amount of sensitivity and reduce contamination for Epoch of Reionization studies, the identification and removal of RFI is especially important. In addition to improved RFI identification, we must also take into account computational efficiency of the RFI-Identification algorithm as radio interferometer arrays such as the Hydrogen Epoch of Reionization Array grow larger in number of receivers. To address this, we present a Deep Fully Convolutional Neural Network (DFCN) that is comprehensive in its use of interferometric data, where both amplitude and phase information are used jointly for identifying RFI. We train the network using simulated HERA visibilities containing mock RFI, yielding a known "ground truth" dataset for evaluating the accuracy of various RFI algorithms. Evaluation of the DFCN model is performed on observations from the 67 dish build-out, HERA-67, and achieves a data throughput of 1.6×105\times 10^{5} HERA time-ordered 1024 channeled visibilities per hour per GPU. We determine that relative to an amplitude only network including visibility phase adds important adjacent time-frequency context which increases discrimination between RFI and Non-RFI. The inclusion of phase when predicting achieves a Recall of 0.81, Precision of 0.58, and F2F_{2} score of 0.75 as applied to our HERA-67 observations.Comment: 11 pages, 7 figure

    Mitigating Internal Instrument Coupling for 21 cm Cosmology. II. A Method Demonstration with the Hydrogen Epoch of Reionization Array

    Get PDF
    We present a study of internal reflection and cross-coupling systematics in Phase I of the Hydrogen Epoch of Reionization Array (HERA). In a companion paper, we outlined the mathematical formalism for such systematics and presented algorithms for modeling and removing them from the data. In this work, we apply these techniques to data from HERA's first observing season as a method demonstration. The data show evidence for systematics that, without removal, would hinder a detection of the 21 cm power spectrum for the targeted Epoch of Reionization (EoR) line-of-sight modes in the range 0.2 h −1 Mpc−1 < k∥{k}_{\parallel } < 0.5 h −1 Mpc−1. In particular, we find evidence for nonnegligible amounts of spectral structure in the raw autocorrelations that overlaps with the EoR window and is suggestive of complex instrumental effects. Through systematic modeling on a single night of data, we find we can recover these modes in the power spectrum down to the integrated noise floor, achieving a dynamic range in the EoR window of 106 in power (mK2 units) with respect to the bright galactic foreground signal. Future work with deeper integrations will help determine whether these systematics can continue to be mitigated down to EoR levels. For future observing seasons, HERA will have upgraded analog and digital hardware to better control these systematics in the field
    • …
    corecore