42 research outputs found

    CD4+ lymphocyte adenosine triphosphate determination in sepsis: a cohort study

    Get PDF
    INTRODUCTION: Patients suffering from sepsis are currently classified on a clinical basis (i.e., sepsis, severe sepsis, septic shock); however, this clinical classification may not accurately reflect the overall immune status of an individual patient. Our objective was to describe a cohort of patients with sepsis in terms of their measured immune status. METHODS: Fifty-two patients with sepsis (n = 13), severe sepsis (n = 21), or septic shock (n = 18) were studied. The immune status was determined by measuring the CD4+ lymphocyte adenosine triphosphate (ATP) content after mitogen stimulation in whole blood. RESULTS: The measured CD4+ lymphocyte ATP content at the time of ICU admission did not differ among the various groups defined by the sepsis classification system (sepsis = 454 ± 79 ng/ml; severe sepsis = 359 ± 54 ng/ml; septic shock = 371 ± 53 ng/ml; P = 0.44). Furthermore, survivors of sepsis had a significantly higher CD4+ lymphocyte ATP content at the time of ICU admission than did nonsurvivors of sepsis (431 ± 41 ng/mL vs. 266 ± 53 ng/mL, respectively; P = 0.04). CONCLUSIONS: The sepsis classification system that is currently used is not representative of the individual immune status as determined by measuring the CD4+ lymphocyte ATP content. Moreover, a lower CD4+ ATP content at the time of ICU admission is associated with a worse clinical outcome in those suffering from sepsis

    Loss of ceramide synthase 3 causes lethal skin barrier disruption

    Get PDF
    The stratum corneum as the outermost epidermal layer protects against exsiccation and infection. Both the underlying cornified envelope (CE) and the intercellular lipid matrix contribute essentially to these two main protective barriers. Epidermis-unique ceramides with ultra-long-chain acyl moities (ULC-Cers) are key components of extracellular lipid lamellae (ELL) and are bound to CE proteins, thereby contributing to the cornified lipid envelope (CLE). Here, we identified human and mouse ceramide synthase 3 (CerS3), among CerS1-6, to be exclusively required for the ULC-Cer synthesis in vitro and of mouse CerS3 in vivo. Deficiency of CerS3 in mice results in complete loss of ULC-Cers (≥C26), lack of continuous ELL and a non-functional CLE. Consequently, newborn mutant mice die shortly after birth from transepidermal water loss. Mutant skin is prone to Candida albicans infection highlighting ULC-Cers to be pivotal for both barrier functions. Persistent periderm, hyperkeratosis and deficient cornification are hallmarks of mutant skin demonstrating loss of Cers to trigger a keratinocyte maturation arrest at an embryonic pre-barrier stag

    Glucosylceramide Synthase Is Involved in Development of Invariant Natural Killer T Cells

    Get PDF
    Invariant natural killer T (iNKT) cells represent a unique population of CD1d-restricted T lymphocytes expressing an invariant T cell receptor encoded by Vα14-Jα18 and Vα24-Jα18 gene segments in mice and humans, respectively. Recognition of CD1d-loaded endogenous lipid antigen(s) on CD4/CD8-double positive (DP) thymocytes is essential for the development of iNKT cells. The lipid repertoire of DP thymocytes and the identity of the decisive endogenous lipid ligands have not yet been fully elucidated. Glycosphingolipids (GSL) were implicated to serve as endogenous ligands. However, further in vivo investigations were hampered by early embryonal lethality of mice deficient for the key GSL-synthesizing enzyme glucosylceramide (GlcCer) synthase [GlcCer synthase (GCS), EC 2.4.1.80]. We have now analyzed the GSL composition of DP thymocytes and shown that GlcCer represented the sole neutral GSL and the acidic fraction was composed of gangliosides. Furthermore, we report on a mouse model that by combination of Vav-promoter-driven iCre and floxed GCS alleles (VavCreGCSf/f) enabled an efficient depletion of GCS-derived GSL very early in the T cell development, reaching a reduction by 99.6% in DP thymocytes. Although the general T cell population remained unaffected by this depletion, iNKT cells were reduced by approximately 50% in thymus, spleen, and liver and showed a reduced proliferation and an increased apoptosis rate. The Vβ-chains repertoire and development of iNKT cells remained unaltered. The GSL-depletion neither interfered with expression of CD1d, SLAM, and Ly108 molecules nor impeded the antigen presentation on DP thymocytes. These results indicate that GlcCer-derived GSL, in particular GlcCer, contribute to the homeostatic development of iNKT cells

    Neuronal Expression of Glucosylceramide Synthase in Central Nervous System Regulates Body Weight and Energy Homeostasis

    Get PDF
    Abstract Hypothalamic neurons are main regulators of energy homeostasis. Neuronal function essentially depends on plasma membrane-located gangliosides. The present work demonstrates that hypothalamic integration of metabolic signals requires neuronal expression of glucosylceramide synthase (GCS; UDP-glucose:ceramide glucosyltransferase). As a major mechanism of central nervous system (CNS) metabolic control, we demonstrate that GCS-derived gangliosides interacting with leptin receptors (ObR) in the neuronal membrane modulate leptin-stimulated formation of signaling metabolites in hypothalamic neurons. Furthermore, ganglioside-depleted hypothalamic neurons fail to adapt their activity (c-Fos) in response to alterations in peripheral energy signals. Consequently, mice with inducible forebrain neuron-specific deletion of the UDP-glucose:ceramide glucosyltransferase gene (Ugcg) display obesity, hypothermia, and lower sympathetic activity. Recombinant adeno-associated virus (rAAV)-mediated Ugcg delivery to the arcuate nucleus (Arc) significantly ameliorated obesity, specifying gangliosides as seminal components for hypothalamic regulation of body energy homeostasis

    Blockade of Glycosphingolipid Synthesis Inhibits Cell Cycle and Spheroid Growth of Colon Cancer Cells In Vitro and Experimental Colon Cancer Incidence In Vivo

    No full text
    Colorectal cancer (CRC) is one of the most frequently diagnosed cancers in humans. At early stages CRC is treated by surgery and at advanced stages combined with chemotherapy. We examined here the potential effect of glucosylceramide synthase (GCS)-inhibition on CRC biology. GCS is the rate-limiting enzyme in the glycosphingolipid (GSL)-biosynthesis pathway and overexpressed in many human tumors. We suppressed GSL-biosynthesis using the GCS inhibitor Genz-123346 (Genz), NB-DNJ (Miglustat) or by genetic targeting of the GCS-encoding gene UDP-glucose-ceramide-glucosyltransferase- (UGCG). GCS-inhibition or GSL-depletion led to a marked arrest of the cell cycle in Lovo cells. UGCG silencing strongly also inhibited tumor spheroid growth in Lovo cells and moderately in HCT116 cells. MS/MS analysis demonstrated markedly elevated levels of sphingomyelin (SM) and phosphatidylcholine (PC) that occurred in a Genz-concentration dependent manner. Ultrastructural analysis of Genz-treated cells indicated multi-lamellar lipid storage in vesicular compartments. In mice, Genz lowered the incidence of experimentally induced colorectal tumors and in particular the growth of colorectal adenomas. These results highlight the potential for GCS-based inhibition in the treatment of CRC

    Male meiotic cytokinesis requires ceramide synthase 3-dependent sphingolipids with unique membrane anchors

    No full text
    Somatic cell cytokinesis was shown to involve the insertion of sphingolipids (SLs) to midbodies prior to abscission. Spermatogenic midbodies transform into stable intercellular bridges (ICBs) connecting clonal daughter cells in a syncytium. This process requires specialized SL structures. (1) Using high resolution-mass spectrometric imaging, we show in situ a biphasic pattern of SL synthesis with testis-specific anchors. This pattern correlates with and depends on ceramide synthase 3 (CerS3) localization in both, pachytene spermatocytes until completion of meiosis and elongating spermatids. (2) Blocking the pathways to germ cell-specific ceramides (CerS3-KO) and further to glycosphingolipids (glucosylceramide synthase-KO) in mice highlights the need for special SLs for spermatid ICB stability. In contrast to somatic mitosis these SLs require ultra-long polyunsaturated anchors with unique physico-chemical properties, which can only be provided by CerS3. Loss of these anchors causes enhanced apoptosis during meiosis, formation of multinuclear giant cells and spermatogenic arrest. Hence, testis-specific SLs, which we also link to CerS3 in human testis, are quintessential for male fertility

    Hepatic Glycosphingolipid Deficiency and Liver Function in Mice

    No full text
    Recent studies have reported that glycosphingolipids (GSLs) might be involved in obesity-induced insulin resistance. Those reports suggested that inhibition of GSL biosynthesis in animals ameliorated insulin resistance accompanied by improved glycemic control and decreased liver steatosis in obese mice. In addition, pharmacologic GSL depletion altered hepatic secretory function. In those studies, ubiquitously acting inhibitors for GSL biosynthesis have been used to inhibit the enzyme Ugcg (UDP-glucose:ceramide glucosyltransferase), catalyzing the first step of the glucosylceramide-based GSL-synthesis pathway. In the present study a genetic approach for selective GSL deletion in hepatocytes was chosen to achieve complete inhibition of GSL synthesis and to avoid possible adverse effects caused by Ugcg inhibitors. Using the Cre/loxP system under control of the albumin promoter, GSL biosynthesis in hepatocytes and their release into the plasma could be effectively blocked. Deletion of GSL in hepatocytes did not change the quantity of bile excretion through the biliary duct. Total bile salt content in bile, feces, and plasma from mutant mice showed no difference as compared to control animals. Cholesterol concentration in liver, bile, feces, and plasma samples remained unaffected. Lipoprotein concentrations in plasma samples in mutant animals reached similar levels as in their control littermates. No alteration in glucose tolerance after intraperitoneal application of glucose and insulin appeared in mutant animals. A preventive effect of GSL deficiency on development of liver steatosis after a high-fat diet was not observed. Conclusion: The data suggest that GSL in hepatocytes are not essential for sterol, glucose, or lipoprotein metabolism and do not prevent high-fat diet-induced liver steatosis, indicating that Ugcg inhibitors exert their effect on hepatocytes either independently of GSL or mediated by other (liver) cell types. (HEPATOLOGY 2010;51:1799-1809
    corecore