747 research outputs found

    The Changing Face of Team Care, and a Challenge for the Future∗

    Get PDF

    Dust formation, evolution, and obscuration effects in the very high-redshift universe

    Get PDF
    The evolution of dust at redshifts z>9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z=9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe.Comment: Accepted for publication in ApJ Letter

    Proarrhythmia and Oncotherapy: So Much To Be Done!

    Get PDF

    Excitons in InGaAs Quantum Dots without Electron Wetting Layer States

    Get PDF
    The Stranski-Krastanov (SK) growth-mode facilitates the self-assembly of quantum dots (QDs) using lattice-mismatched semiconductors, for instance InAs and GaAs. SK QDs are defect-free and can be embedded in heterostructures and nano-engineered devices. InAs QDs are excellent photon emitters: QD-excitons, electron-hole bound pairs, are exploited as emitters of high quality single photons for quantum communication. One significant drawback of the SK-mode is the wetting layer (WL). The WL results in a continuum rather close in energy to the QD-confined-states. The WL-states lead to unwanted scattering and dephasing processes of QD-excitons. Here, we report that a slight modification to the SK-growth-protocol of InAs on GaAs -- we add a monolayer of AlAs following InAs QD formation -- results in a radical change to the QD-excitons. Extensive characterisation demonstrates that this additional layer eliminates the WL-continuum for electrons enabling the creation of highly charged excitons where up to six electrons occupy the same QD. Single QDs grown with this protocol exhibit optical linewidths matching those of the very best SK QDs making them an attractive alternative to standard InGaAs QDs

    Influence of Zoledronic Acid on Atrial Electrophysiological Parameters and Electrocardiographic Measurements

    Get PDF
    INTRODUCTION: Our objective was to determine effects of zoledronic acid (ZA) on atrial electrophysiological parameters and electrocardiographic measurements. METHODS AND RESULTS: Ex vivo perfusion study: Isolated guinea pig hearts were perfused with modified Krebs-Henseleit (K-H) buffer with or without ZA 0.07 mg/kg/L (each n = 6). In ZA-perfused hearts, atrial action potential at 90% repolarization (APD90 ) decreased more from baseline than in controls (-23.2% ± -5.1% vs. -2.1% ± -8.1%, P < 0 .0001), as did APD30 (-28.8% ± -3.8% vs. -2.1% ± -2.1%, P < 0.0001). In vivo dose-response study: Guinea pigs underwent intraperitoneal injections every 2 weeks in 1 of 4 groups (each n = 8): ZA 0.007 mg/kg (low-dose), ZA 0.07 mg/kg (medium-dose), ZA 0.7 mg/kg (high-dose), or placebo. Hearts were excised at 8 weeks and perfused with modified K-H. Atrial effective refractory period (ERP) was lower with medium- and high-dose ZA versus placebo (P = 0.004). Atrial APD30 was lower with high-dose ZA versus placebo, low and medium doses (P < 0.001). Canine ECG study: Mature female beagles received intravenous ZA 0.067 mg/kg or saline (placebo; each n = 6) every 2 weeks for 12 weeks. P wave dispersion was greater in the ZA group (7.7 ± 3.7 vs. 3.4 ± 2.6 ms, P = 0.04). There were no significant differences in P wave index, maximum or minimum P wave duration, or PR interval. CONCLUSION: ZA shortens left atrial APD and ERP and increases P wave dispersion

    Cardiac myocyte-specific knock-out of calcium-independent phospholipase A2γ (iPLA2γ) decreases oxidized fatty acids during ischemia/reperfusion and reduces infarct size

    Get PDF
    Calcium-independent phospholipase A(2)γ (iPLA(2)γ) is a mitochondrial enzyme that produces lipid second messengers that facilitate opening of the mitochondrial permeability transition pore (mPTP) and contribute to the production of oxidized fatty acids in myocardium. To specifically identify the roles of iPLA(2)γ in cardiac myocytes, we generated cardiac myocyte-specific iPLA(2)γ knock-out (CMiPLA(2)γKO) mice by removing the exon encoding the active site serine (Ser-477). Hearts of CMiPLA(2)γKO mice exhibited normal hemodynamic function, glycerophospholipid molecular species composition, and normal rates of mitochondrial respiration and ATP production. In contrast, CMiPLA(2)γKO mice demonstrated attenuated Ca(2+)-induced mPTP opening that could be rapidly restored by the addition of palmitate and substantially reduced production of oxidized polyunsaturated fatty acids (PUFAs). Furthermore, myocardial ischemia/reperfusion (I/R) in CMiPLA(2)γKO mice (30 min of ischemia followed by 30 min of reperfusion in vivo) dramatically decreased oxidized fatty acid production in the ischemic border zones. Moreover, CMiPLA(2)γKO mice subjected to 30 min of ischemia followed by 24 h of reperfusion in vivo developed substantially less cardiac necrosis in the area-at-risk in comparison with their WT littermates. Furthermore, we found that membrane depolarization in murine heart mitochondria was sensitized to Ca(2+) by the presence of oxidized PUFAs. Because mitochondrial membrane depolarization and calcium are known to activate iPLA(2)γ, these results are consistent with salvage of myocardium after I/R by iPLA(2)γ loss of function through decreasing mPTP opening, diminishing production of proinflammatory oxidized fatty acids, and attenuating the deleterious effects of abrupt increases in calcium ion on membrane potential during reperfusion

    Simultaneous administration of high-dose atorvastatin and clopidogrel does not interfere with platelet inhibition during percutaneous coronary intervention

    Get PDF
    BACKGROUND: Reloading with high-dose atorvastatin shortly before percutaneous coronary interventions (PCIs) has been proposed as a strategy to reduce periprocedural myonecrosis. There has been a concern that statins that are metabolized by cytochrome P450 3A4 may interfere with clopidogrel metabolism at high doses. The impact of simultaneous administration of high doses of atorvastatin and clopidogrel on the efficacy of platelet inhibition has not been established. METHODS: Subjects (n=60) were randomized to receive atorvastatin 80 mg together with clopidogrel 600 mg loading dose (n=28) versus clopidogrel 600 mg alone (n=32) at the time of PCI. Platelet aggregation was measured at baseline, 4 hours after clopidogrel loading dose, and 16-24 hours after clopidogrel loading dose by light transmittance aggregometry using adenosine diphosphate as agonist. RESULTS: Platelet aggregation was similar at baseline in both the atorvastatin and the control groups (adenosine diphosphate 10 µM: 57%±19% vs 61%±21%; P=0.52). There was no significant difference in platelet aggregation between the atorvastatin and the control groups at 4 hours (37%±18% vs 39%±21%; P=0.72) and 16-24 hours post-clopidogrel loading dose (35%±17% vs 37%±18%; P=0.75). No significant difference in incidence of periprocedural myonecrosis was observed between the atorvastatin and control groups (odds ratio: 1.02; 95% confidence interval 0.37-2.8). CONCLUSION: High-dose atorvastatin given simultaneously with clopidogrel loading dose at the time of PCI does not significantly alter platelet inhibition by clopidogrel. Statin reloading with high doses of atorvastatin at the time of PCI appears to be safe without adverse effects on platelet inhibition by clopidogrel (ClinicalTrials.gov: NCT00979940)

    Influence of Oral Progesterone Administration on Drug-Induced QT Interval Lengthening: A Randomized, Double-Blind, Placebo-Controlled Crossover Study

    Get PDF
    Objectives We tested the hypothesis that oral progesterone administration attenuates drug-induced QT interval lengthening. Background Evidence from preclinical and human investigations suggests that higher serum progesterone concentrations may be protective against drug-induced QT interval lengthening. Methods In this prospective, double-blind, crossover study, 19 healthy female volunteers (21-40 years) were randomized to receive progesterone 400 mg or matching placebo orally once daily for 7 days timed to the menses phase of the menstrual cycle (between-phase washout period = 49 days). On day 7, ibutilide 0.003 mg/kg was infused over 10 minutes, after which QT intervals were recorded and blood samples collected for 12 hours. Prior to the treatment phases, subjects underwent ECG monitoring for 12 hours to calculate individualized heart rate-corrected QT intervals (QTcI). Results Fifteen subjects completed all study phases. Maximum serum ibutilide concentrations in the progesterone and placebo phases were similar (1247±770 vs 1172±709 pg/mL, p=0.43). Serum progesterone concentrations were higher during the progesterone phase (16.2±11.0 vs 1.2±1.0 ng/mL, p<0.0001), while serum estradiol concentrations in the two phases were similar (89.3±62.8 vs 71.8±31.7 pg/mL, p=0.36). Pre-ibutilide lead II QTcI was significantly lower in the progesterone phase (412±15 vs 419±14 ms, p=0.04). Maximum ibutilide-associated QTcI (443±17 vs 458±19 ms, p=0.003), maximum percent increase in QTcI from pretreatment value (7.5±2.4 vs 9.3±3.4%, p=0.02) and area under the effect (QTcI) curve during the first hour post-ibutilide (497±13 vs 510±16 ms-hr, p=0.002) were lower during the progesterone phase. Progesterone-associated adverse effects included fatigue/malaise and vertigo. Conclusions Oral progesterone administration attenuates drug-induced QTcI lengthening
    corecore