29 research outputs found

    Tissue plasminogen activator mRNA in murine tissues

    Get PDF
    AbstractThe urokinase-type and tissue-type plasminogen activators are the two enzymes found in mammals, which specifically convert the zymogen plasminogen to plasmin. Using cDNA probes, we have assayed for the presence of the two types of plasminogen activator mRNAs in murine tissues. We demonstrate that tissue-type plasminogen activator mRNA can be detected in a wide variety of tissues. In contrast, the accumulation of urokinase-type plasminogen activator mRNA is observed in only a few of the tissues analyzed. Using an S1 nuclease assay, we demonstrate that the tPA mRNA detected contains the complete sequences encoding the non-protease finger, growth-factor and kringle domains

    A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells

    Get PDF
    The advent of RNA interference has led to the ability to interfere with gene expression and greatly expanded our ability to perform genetic screens in mammalian cells. The expression of short hairpin RNA (shRNA) from polymerase III promoters can be encoded in transgenes and used to produce small interfering RNAs that down-regulate specific genes. In this study, we show that polymerase II-transcribed shRNAs display very efficient knockdown of gene expression when the shRNA is embedded in a microRNA context. Importantly, our shRNA expression system [called PRIME (potent RNA interference using microRNA expression) vectors] allows for the multicistronic cotranscription of a reporter gene, thereby facilitating the tracking of shRNA production in individual cells. Based on this system, we developed a series of lentiviral vectors that display tetracycline-responsive knockdown of gene expression at single copy. The high penetrance of these vectors will facilitate genomewide loss-of-function screens and is an important step toward using bar-coding strategies to follow loss of specific sequences in complex populations

    Identification of Combinatorial Drugs that Synergistically Kill both Eribulin-Sensitive and Eribulin-Insensitive Tumor Cells

    No full text
    Eribulin sensitivity was examined in a panel of twenty-five human cancer cell lines representing a variety of tumor types, with a preponderance of breast and lung cancer cell lines. As expected, the cell lines vary in sensitivity to eribulin at clinically relevant concentrations. To identify combination drugs capable of increasing anticancer effects in patients already responsive to eribulin, as well as inducing de novo anticancer effects in non-responders, we performed a combinatorial high throughput screen to identify drugs that combine with eribulin to selectively kill tumor cells. Among other observations, we found that inhibitors of ErbB1/ErbB2 (lapatinib, BIBW-2992, erlotinib), MEK (E6201, trametinib), PI3K (BKM-120), mTOR (AZD 8055, everolimus), PI3K/mTOR (BEZ 235), and a BCL2 family antagonist (ABT-263) show combinatorial activity with eribulin. In addition, antagonistic pairings with other agents, such as a topoisomerase I inhibitor (topotecan hydrochloride), an HSP-90 inhibitor (17-DMAG), and gemcitabine and cytarabine, were identified. In summary, the preclinical studies described here have identified several combination drugs that have the potential to either augment or antagonize eribulin’s anticancer activity. Further elucidation of the mechanisms responsible for such interactions may be important for identifying valuable therapeutic partners for eribulin.</p

    A Src SH2 selective binding compound inhibits osteoclast-mediated resorption

    Get PDF
    AbstractBackground: The observations that Src−/− mice develop osteopetrosis and Src family tyrosine kinase inhibitors decrease osteoclast-mediated resorption of bone have implicated Src in the regulation of osteoclast-resorptive activity. We have designed and synthesized a compound, AP22161, that binds selectively to the Src SH2 domain and demonstrated that it inhibits Src-dependent cellular activity and inhibits osteoclast-mediated resorption.Results: AP22161 was designed to bind selectively to the Src SH2 domain by targeting a cysteine residue within the highly conserved phosphotyrosine-binding pocket. AP22161 was tested in vitro for binding to SH2 domains and was found to bind selectively and with high affinity to the Src SH2 domain. AP22161 was further tested in mechanism-based cellular assays and found to block Src SH2 binding to peptide ligands, inhibit Src-dependent cellular activity and diminish osteoclast resorptive activity.Conclusions: These results indicate that a compound that selectively inhibits Src SH2 binding can be used to inhibit osteoclast resorption. Furthermore, AP22161 has the potential to be further developed for treating osteoporosis

    Deep Vein Thrombosis (DVT) and Pulmonary Embolism (PE): Awareness and Prophylaxis Practices Reported by Patients with Cancer

    No full text
    <div><p>Patients with cancer are at increased risk for venous thromboembolism (VTE). An online survey to measure PE/DVT terminology awareness and understanding of VTE risks revealed 24% and 15% of the 500 cancer patients surveyed had heard of term DVT/PE; 19% and 17% could name signs/ symptoms of DVT/PE; 3% recognized cancer treatments as risk factors for DVT/PE. Only 25% of the patients received prevention education from providers; <50% received VTE prophylaxis. Cancer patient awareness of VTE terminology and cancer and/or its treatment as risk for VTE is low. More effective patient/physician dialogue about VTE risk and thromboprophylaxis is needed.</p></div
    corecore