1,660 research outputs found

    A vector error correction forecasting model of the U.S. economy

    Get PDF
    Any research or policy analysis in economics must be consistent with the time-series properties of observed macroeconomic data. Numerous previous studies of such time series reinforce the need to specify correctly a model's multivariate stochastic structure. This paper discusses in detail the speciation of a vector error correction forecasting model that is anchored by long-run equilibrium relationships suggested by economic theory. The model includes six variables - the CPI, the implicit price deflator for GDP, real money balances (MI), the federal funds rate, the yield on long-term (10-year) government bonds, and real GDP - and four cointegrating vectors. Model forecasts during the 1990's are compared to those made by the Federal Reserve and by private forecasters.Forecasting ; Econometric models

    Oxygen Interaction With Space-Power Materials

    Get PDF
    Four investigations were undertaken during the period of this grant: (1 ) oxidation of molybdenum and of niobium-1 % zirconium, (2) preparation of and examination of EOIM-3 samples, (3) sputtering of Teflon by oxygen ion bombardment,and (4) sputtering of Ions from copper and aluminum by oxygen and argon ion bombardment. Investigations (1), (3), and (4) used a low-energy Ion gun to bombard surfaces within an ultra-high vacuum system. Particles ejected from the surfaces were detected by a mass spectrometer

    Lunar Atmosphere and Dust Environment Explorer Integration and Test

    Get PDF
    Integration and test (I&T) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) is presented. A collaborative NASA project between Goddard Space Flight Center and Ames Research Center, LADEE's mission is to explore the low lunar orbit environment and exosphere for constituents. Its instruments include two spectrometers, a dust detector, and a laser communication technology demonstration. Although a relatively low-cost spacecraft, LADEE has I&T requirements typical of most planetary probes, such as prelaunch contamination control, sterilization, and instrument calibration. To lead to a successful mission, I&T at the spacecraft, instrument, and observatory level must include step-by-step and end-to-end functional, environmental, and performance testing. Due to its compressed development schedule, LADEE I&T planning requires adjusting test flows and sequences to account for long-lead critical-path items and limited spares. A protoflight test-level strategy is also baselined. However, the program benefits from having two independent but collaborative teams of engineers, managers, and technicians that have a wealth of flight project experience. This paper summarizes the LADEE I&T planning, flow, facilities, and probe-unique processes. Coordination of requirements and approaches to I&T when multiple organizations are involved is discussed. Also presented are cost-effective approaches to I&T that are transferable to most any spaceflight project I&T program

    Polarization simulations of stellar wind bow shock nebulae. II. The case of dust scattering

    Full text link
    We study the polarization produced by scattering from dust in a bow shock-shaped region of enhanced density surrounding a stellar source, using the Monte Carlo radiative transfer code SLIP. Bow shocks are structures formed by the interaction of the winds of fast-moving stars with the interstellar medium. Our previous study focused on the polarization produced in these structures by electron scattering; we showed that polarization is highly dependent on inclination angle and that multiple scattering changes the shape and degree of polarization. In contrast to electron scattering, dust scattering is wavelength-dependent, which changes the polarization behaviour. Here we explore different dust particle sizes and compositions and generate polarized spectral energy distributions for each case. We find that the polarization SED behaviour depends on the dust composition and grain size. Including dust emission leads to polarization changes with temperature at higher optical depth in ways that are sensitive to the orientation of the bow shock. In various scenarios and under certain assumptions, our simulations can constrain the optical depth and dust properties of resolved and unresolved bow shock-shaped scattering regions.Constraints on optical depth can provide estimates of local ISM density for observed bow shocks. We also study the impact of dust grains filling the region between the star and bow shock. We see that as the density of dust between the star and bow shock increases, the resulting polarization is suppressed for all the optical depth regimes.Comment: 21 pages, accepted for publication in MNRA

    Pharmacologic inhibition of somatostatin receptor 2 to restore glucagon counterregulation in diabetes

    Get PDF
    Glucose homeostasis is primarily maintained by pancreatic hormones, insulin and glucagon, with an emerging role for a third islet hormone, somatostatin, in regulating insulin and glucagon responses. Under healthy conditions, somatostatin secreted from pancreatic islet ÎŽ-cells inhibits both insulin and glucagon release through somatostatin receptor- induced cAMP-mediated downregulation and paracrine inhibition of ÎČ- and α-cells, respectively. Since glucagon is the body’s most important anti-hypoglycemic hormone, and because glucagon counterregulation to hypoglycemia is lost in diabetes, the study of somatostatin biology has led to new investigational medications now in development that may help to restore glucagon counterregulation in type 1 diabetes. This review highlights the normal regulatory role of pancreatic somatostatin signaling in healthy islet function and how the inhibition of somatostatin receptor signaling in pancreatic α-cells may restore normal glucagon counterregulation in diabetes mellitus

    Electrical and Optical Performance Characteristics of p/n InGaAs Monolithic Interconnected Modules

    Get PDF
    There has been a traditional trade-off in ThermoPhotoVoltaic (TPV) energy conversion development between system efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A Monolithic Interconnected Module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual Indium Gallium Arsenide (InGaAs) devices series-connected on a single semi-insulating Indium Phosphide (InP) substrate. The MIMs are exposed to the entire emitter output, thereby maximizing output power density. An InfraRed (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight (8) series interconnected cells. MIM devices, produced from 0.74eV InGaAs, have demonstrated V(sub infinity) = 3.2 volts, J(sub sc) = 70 mA/sq cm and a fill factor of 66% under flashlamp testing. IR reflectance measurements (greater than 2 microns) of these devices indicate a reflectivity of greater than 82%. MIM devices produced from 0.55 eV InGaAs have also been demonstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM0) have been demonstrated

    Dichlorido(η6-p-cymene)(4-fluoro­aniline-ÎșN)ruthenium(II)

    Get PDF
    The title compound, [RuCl2(C10H14)(C6H6FN)], a pseudo-octa­hedral d 6 complex, has the expected piano-stool geometry around the Ru(II) atom. The fluoro­aniline ring forms a dihedral angle of 19.3 (2)° with the p-cymene ring. In the crystal, two mol­ecules form an inversion dimer via a pair of N—H⋯Cl hydrogen bonds. Weak inter­molecular C—H⋯Cl inter­actions involving the p-cymene ring consolidate the crystal packing

    Different paths to the modern state in Europe: the interaction between domestic political economy and interstate competition

    Get PDF
    Theoretical work on state formation and capacity has focused mostly on early modern Europe and on the experience of western European states during this period. While a number of European states monopolized domestic tax collection and achieved gains in state capacity during the early modern era, for others revenues stagnated or even declined, and these variations motivated alternative hypotheses for determinants of fiscal and state capacity. In this study we test the basic hypotheses in the existing literature making use of the large date set we have compiled for all of the leading states across the continent. We find strong empirical support for two prevailing threads in the literature, arguing respectively that interstate wars and changes in economic structure towards an urbanized economy had positive fiscal impact. Regarding the main point of contention in the theoretical literature, whether it was representative or authoritarian political regimes that facilitated the gains in fiscal capacity, we do not find conclusive evidence that one performed better than the other. Instead, the empirical evidence we have gathered lends supports to the hypothesis that when under pressure of war, the fiscal performance of representative regimes was better in the more urbanized-commercial economies and the fiscal performance of authoritarian regimes was better in rural-agrarian economie
    • 

    corecore