81 research outputs found

    Observations of high definition symmetric quasi-periodic oscillations in the mid-latitude ionosphere with LOFAR

    Full text link
    We present broadband ionospheric scintillation observations of highly defined symmetric quasi-periodic oscillations (QPO: Maruyama 1991) caused by plasma structures in the midlatitude ionosphere using the LOw Frequency ARray (LOFAR: van Haarlem et al., 2013). Two case studies are shown, one from 15th December 2016, and one from 30th January 2018, in which well-defined main signal fades and secondary diffraction fringing are observed. In particular, the broadband observing capabilities of LOFAR permit us to see considerable frequency dependent behaviour in the QPOs which, to our knowledge, is a new result. We extract some of the clearest examples of scintillation arcs reported in an ionospheric context, from delay-Doppler spectral analysis of these two events. These arcs permit the extraction of propagation velocities for the plasma structures causing the QPOs ranging from 50 - 200 ms1^{-1}, depending on the assumed altitude. The spacing between the individual plasma structures ranges between 5 - 20 km. The periodicities of the main signal fades in each event and, in the case of the 2018 data, co-temporal ionosonde data, suggest the propagation of the plasma structures causing the QPOs is in the E-region. Each of the two events is accurately reproduced using a Gaussian perturbation phase screen model. Individual signal fades and enhancements were modelled using small variations in total electron content (TEC) amplitudes of order 1 mTECu, demonstrating the sensitivity of LOFAR to very small fluctuations in ionospheric plasma density. To our knowledge these results are among the most detailed observations and modelling of QPOs in the literature.Comment: 36 pages, 17 figure

    Large-scale structure of the fast solar wind

    Get PDF
    We present the results of a comprehensive study of the fast solar wind near solar minimum conditions using interplanetary scintillation (IPS) data taken with the EISCAT system in northern Scandinavia, and a recent extremely long baseline observation using both EISCAT and MERLIN systems. The results from IPS observations suggest that the fast wind inside 100 solar radii (R-circle dot) can be represented by a two-mode model in some cases but this distinction is much less clear by in situ distances beyond 1 astronomical unit (215 R-circle dot). Two distinct fast streams are seen in the extremely long baseline IPS observation; comparison of the IPS line of sight with a synoptic map of white light indicates the faster mode overlies the polar crown and the slower fast mode overlies an equatorial extension of the polar coronal hole

    All-sky interferometric riometry

    Get PDF
    The first implementation of a Fourier-based interferometric riometry technique for measuring electron density induced ionospheric opacity at VHF radio frequencies is presented. Unlike multibeam riometers, which form discrete beams on the sky, the interferometric technique permits all-sky sampling of incoming cosmic radio noise emissions resulting in a spatially-continuous radiogram of the entire sky. The map of the received power at each time may then be compared to the equivalent map from a “quiet day”, allowing the morphology of ionospheric absorption of cosmic radio noise to be ascertained. In this work, the high-latitude Kilpisjarvi Atmospheric Imaging Receiver Array (KAIRA) was used to carry out the first interferometric riometry measurements in late 2013, producing all-sky absorption maps of space weather related ionization in the D region

    Separating Nightside Interplanetary And Ionospheric Scintillation With Lofar

    Get PDF
    Observation of interplanetary scintillation (IPS) beyond Earth-orbit can be challenging due to the necessity to use low radio frequencies at which scintillation due to the ionosphere could confuse the interplanetary contribution. A recent paper by Kaplan {\it et al} (2015) presenting observations using the Murchison Widefield Array (MWA) reports evidence of night-side IPS on two radio sources within their field of view. However, the low time cadence of 2\,s used might be expected to average out the IPS signal, resulting in the reasonable assumption that the scintillation is more likely to be ionospheric in origin. To verify or otherwise this assumption, this letter uses observations of IPS taken at a high time cadence using the Low Frequency Array (LOFAR). Averaging these to the same as the MWA observations, we demonstrate that the MWA result is consistent with IPS, although some contribution from the ionosphere cannot be ruled out. These LOFAR observations represent the first of night-side IPS using LOFAR, with solar wind speeds consistent with a slow solar wind stream in one observation and a CME expecting to be observed in another.Comment: Accepted for publication in Astrophysical Journal Letter

    Towards the possibility to combine LOFAR and GNSS measurements to sense ionospheric irregularities

    Get PDF
    Inhomogeneities within the ionospheric plasma density affect trans-ionospheric radio signals, causing radio wave scintillation in the amplitude and phase of the signals. The amount of scintillation induced by ionospheric irregularities typically decreases with the radio wave frequency. As the ionosphere affects a variety of technological systems (e.g., civil aviation, financial operations) as well as low-frequency radio astronomy observations, it is important to detect and monitor iono- spheric effects with higher accuracy than currently available. Here, a novel methodology for the detection and characterization of ionospheric irregularities is established on the basis of LOFAR scintillation measurements at VHF that takes into account of the lack of ergodicity in the intensity fluctuations induced by scintillation. The methodology estimates the S 4 scintillation index originating from irregularities with spatial scales in the inertial sub-range of electron density fluctuations in the ionosphere. The methodology is illustrated by means of observations that were collected through the Polish LOFAR stations located in Bałdy, Borówiec and Łazy: its validation was carried out by comparing LOFAR VHF scintillation observations with independent GNSS observations that were collected through a high-rate receiver located near the LOFAR station in Bałdy as well as through geodetic receivers from the Polish ASG-EUPOS network. Two case stud- ies are presented: 31 March 2017 and 28 September 2017. The comparison between LOFAR S4 observations and independent ionospheric measurements of both scintillation and rate of change of TEC from GNSS reveals that the sensitivity of LOFAR and GNSS to ionospheric structures is different as a consequence of the frequency dependency of radio wave scintillation. Furthermore, it can be noticed that observations of LOFAR VHF scintillation can be utilised to detect plasma structures forming in the mid-latitude ionosphere, including electron density gradients occurring over spatial scales that are not necessarily detected through traditional GNSS measurements: the detection of all spatial scales is important for a correct monitoring and modelling of ionospheric processes. Hence, the different sensitivity of LOFAR to ionospheric structures, in addition to traditional GNSS ionospheric measurements, allows to expand the knowledge of ionospheric processes
    corecore