129 research outputs found

    Development of a suitable detection method for silver nanoparticles in fish tissue using single particle ICP-MS

    Get PDF
    A strong alkali extraction technique and suitable single particle ICP-MS method is described for the routine quantifying of particle number concentration, particle size and particle mass concentration for silver nanomaterials in fish tissue.</p

    An assessment of the dietary bioavailability of silver nanomaterials in rainbow trout using an ex vivo gut sac technique

    Get PDF
    The uptake of engineered nanomaterials (ENMs) by the gut of fishes is poorly understood.</p

    Differences in toxicity and accumulation of metal from copper oxide nanomaterials compared to copper sulphate in zebrafish embryos: Delayed hatching, the chorion barrier and physiological effects

    Get PDF
    The mechanisms of toxicity of engineered nanomaterials (ENMs) to the early life stages of freshwater fish, and the relative hazard compared to dissolved metals, is only partially understood. In the present study, zebrafish embryos were exposed to lethal concentrations of copper sulphate (CuSO4) or copper oxide (CuO) ENMs (primary size ∼15 nm), and then the sub-lethal effects investigated at the LC10 concentrations over 96 h. The 96 h-LC50 (mean ± 95% CI) for CuSO4 was 303 ± 14 µg Cu L−1 compared to 53 ± 9.9 mg L−1 of the whole material for CuO ENMs; with the ENMs being orders of magnitude less toxic than the metal salt. The EC50 for hatching success was 76 ± 11 µg Cu L−1 and 0.34 ± 0.78 mg L−1 for CuSO4 and CuO ENMs respectively. Failure to hatch was associated with bubbles and foam-looking perivitelline fluid (CuSO4), or particulate material smothering the chorion (CuO ENMs). In the sub-lethal exposures, about 42% of the total Cu as CuSO4 was internalised, as measured by Cu accumulation in the de-chorionated embryos, but for the ENMs exposures, nearly all (94%) of the total Cu was associated with chorion; indicating the chorion as an effective barrier to protect the embryo from the ENMs in the short term. Both forms of Cu exposure caused sodium (Na+) and calcium (Ca2+), but not magnesium (Mg2+), depletion from the embryos; and CuSO4 caused some inhibition of the sodium pump (Na+/K+-ATPase) activity. Both forms of Cu exposure caused some loss of total glutathione (tGSH) in the embryos, but without induction of superoxide dismutase (SOD) activity. In conclusion, CuSO4 was much more toxic than CuO ENMs to early life stage zebrafish, but there are subtle differences in the exposure and toxic mechanisms for each substance

    INSIdE NANO : a systems biology framework to contextualize the mechanism-of-action of engineered nanomaterials

    Get PDF
    Engineered nanomaterials (ENMs) are widely present in our daily lives. Despite the efforts to characterize their mechanism of action in multiple species, their possible implications in human pathologies are still not fully understood. Here we performed an integrated analysis of the effects of ENMs on human health by contextualizing their transcriptional mechanism-of-action with respect to drugs, chemicals and diseases. We built a network of interactions of over 3,000 biological entities and developed a novel computational tool, INSIdE NANO, to infer new knowledge about ENM behavior. We highlight striking association of metal and metal-oxide nanoparticles and major neurodegenerative disorders. Our novel strategy opens possibilities to achieve fast and accurate read-across evaluation of ENMs and other chemicals based on their biosignatures.Peer reviewe

    Dynamic transcriptomic profiles of zebrafish gills in response to zinc depletion

    Get PDF
    Background: Zinc deficiency is detrimental to organisms, highlighting its role as an essential micronutrient contributing to numerous biological processes. To investigate the underlying molecular events invoked by zinc depletion we performed a temporal analysis of transcriptome changes observed within the zebrafish gill. This tissue represents a model system for studying ion absorption across polarised epithelial cells as it provides a major pathway for fish to acquire zinc directly from water whilst sharing a conserved zinc transporting system with mammals. Results: Zebrafish were treated with either zinc-depleted (water = 2.61 μg L-1; diet = 26 mg kg-1) or zinc-adequate (water = 16.3 μg L-1; diet = 233 mg kg-1) conditions for two weeks. Gill samples were collected at five time points and transcriptome changes analysed in quintuplicate using a 16K oligonucleotide array. Of the genes represented the expression of a total of 333 transcripts showed differential regulation by zinc depletion (having a fold-change greater than 1.8 and an adjusted P-value less than 0.1, controlling for a 10% False Discovery Rate). Down-regulation was dominant at most time points and distinct sets of genes were regulated at different stages. Annotation enrichment analysis revealed that 'Developmental Process' was the most significantly overrepresented Biological Process GO term (P = 0.0006), involving 26% of all regulated genes. There was also significant bias for annotations relating to development, cell cycle, cell differentiation, gene regulation, butanoate metabolism, lysine degradation, protein tyrosin phosphatases, nucleobase, nucleoside and nucleotide metabolism, and cellular metabolic processes. Within these groupings genes associated with diabetes, bone/cartilage development, and ionocyte proliferation were especially notable. Network analysis of the temporal expression profile indicated that transcription factors foxl1, wt1, nr5a1, nr6a1, and especially, hnf4a may be key coordinators of the homeostatic response to zinc depletion. Conclusions: The study revealed the complex regulatory pathways that allow the organism to subtly respond to the low-zinc condition. Many of the processes affected reflected a fundamental restructuring of the gill epithelium through reactivation of developmental programs leading to stem cell differentiation. The specific regulation of genes known to be involved in development of diabetes provides new molecular links between zinc deficiency and this disease. The present study demonstrates the importance of including the time-dimension in microarray studies

    Sub-lethal effects of waterborne exposure to copper nanoparticles compared to copper sulphate on the shore crab ( Carcinus maenas )

    Get PDF
    publisher: Elsevier articletitle: Sub-lethal effects of waterborne exposure to copper nanoparticles compared to copper sulphate on the shore crab (Carcinus maenas) journaltitle: Aquatic Toxicology articlelink: http://dx.doi.org/10.1016/j.aquatox.2017.08.006 content_type: article copyright: © 2017 Elsevier B.V. All rights reserved

    Study of a class of non-polynomial oscillator potentials

    Full text link
    We develop a variational method to obtain accurate bounds for the eigenenergies of H = -Delta + V in arbitrary dimensions N>1, where V(r) is the nonpolynomial oscillator potential V(r) = r^2 + lambda r^2/(1+gr^2), lambda in (-infinity,\infinity), g>0. The variational bounds are compared with results previously obtained in the literature. An infinite set of exact solutions is also obtained and used as a source of comparison eigenvalues.Comment: 16 page
    • …
    corecore