230 research outputs found

    Primordial Black Holes, Eternal Inflation, and the Inflationary Parameter Space after WMAP5

    Full text link
    We consider constraints on inflation driven by a single, minimally coupled scalar field in the light of the WMAP5 dataset, as well as ACBAR and the SuperNova Legacy Survey. We use the Slow Roll Reconstruction algorithm to derive optimal constraints on the inflationary parameter space. The scale dependence in the slope of the scalar spectrum permitted by WMAP5 is large enough to lead to viable models where the small scale perturbations have a substantial amplitude when extrapolated to the end of inflation. We find that excluding parameter values which would cause the overproduction of primordial black holes or even the onset of eternal inflation leads to potentially significant constraints on the slow roll parameters. Finally, we present a more sophisticated approach to including priors based on the total duration of inflation, and discuss the resulting restrictions on the inflationary parameter space.Comment: v2: version published in JCAP. Minor clarifications and references adde

    The Ionized Gas and Nuclear Environment in NGC 3783. I. Time-Averaged 900 ks Chandra Grating Spectroscopy

    Get PDF
    We present results from a 900 ks exposure of NGC 3783 with the High-Energy Transmission Grating Spectrometer on board the Chandra X-ray Observatory. The resulting X-ray spectrum has the best combination of signal-to-noise and resolution ever obtained for an AGN. This spectrum reveals absorption lines from H-like and He-like ions of N, O, Ne, Mg, Al, Si, and S. There are also possible absorption lines from H-like and He-like Ar and Ca. We also identify inner-shell absorption from lower-ionization ions such as Si_VII-Si_XII and S_XII-S_XIV. The iron absorption spectrum is very rich; L-shell lines of Fe_XVII-Fe_XXIV are detected, strong complex of M-shell lines, and probable resonance lines from Fe_XXV. The absorption lines are blueshifted relative to the systemic velocity by a mean velocity of -590+-150 km/s. We resolve many of the absorption lines, and their mean FWHM is 820+-280 km/s. We do not find correlations between the velocity shifts or the FWHMs with the ionization potentials of the ions. Most absorption lines show asymmetry, having more extended blue wings than red wings. In O_VII we have resolved this asymmetry to be from an additional absorption system at ~ -1300 km/s. The two X-ray absorption systems are consistent in velocity shift and FWHM with the ones identified in the UV lines of C IV, N V, and H I. Equivalent width measurements for all lines are given and column densities are calculated for several ions. We resolve the narrow Fe_K\alpha line at 6398.2+-3.3 eV to have a FWHM of 1720+-360 km/s, which suggests that this narrow line may be emitted from the outer part of the broad line region or the inner part of the torus. We also detect a `Compton shoulder' redward of the narrow Fe_K\alpha line which indicates that it arises in cold, Compton-thick gas.Comment: 19 pages, 12 figures (2 in color), emulateapj5, accepted for publication in The Astrophysical Journal Supplement

    On the Apparent Absence of Wolf–Rayet+Neutron Star Systems: The Curious Case of WR124

    Get PDF
    Among the different types of massive stars in advanced evolutionary stages is the enigmatic WN8h type. There are only a few Wolf–Rayet (WR) stars with this spectral type in our Galaxy. It has long been suggested that WN8h-type stars are the products of binary evolution that may harbor neutron stars (NS). One of the most intriguing WN8h stars is the runaway WR 124 surrounded by its magnificent nebula M1-67. We test the presence of an accreting NS companion in WR 124 using ~100 ks long observations by the Chandra X-ray observatory. The hard X-ray emission from WR 124 with a luminosity of L X ~ 1031 erg s−1 is marginally detected. We use the non-local thermodynamic equilibrium stellar atmosphere code PoWR to estimate the WR wind opacity to the X-rays. The wind of a WN8-type star is effectively opaque for X-rays, hence the low X-ray luminosity of WR 124 does not rule out the presence of an embedded compact object. We suggest that, in general, high-opacity WR winds could prevent X-ray detections of embedded NS, and be an explanation for the apparent lack of WR+NS systems

    Polarization Variability Arising from Clumps in the Winds of Wolf-Rayet Stars

    Full text link
    The polarimetric and photometric variability of Wolf-Rayet (WR) stars as caused by clumps in the winds, is revisited. In the model which is improved from Li et al. 2000, the radial expansion of the thickness is accounted for, but we retain the dependence on the beta velocity law, stellar occultation effects. We again search for parameters that can yield results consistent with observations in regards to the mean polarization, the ratio of polarimetric to photometric variability, and the volume filling factor. Clump generation and spatial distribution are randomized by the Monte Carlo method so as to produce clumps which are, in the mean, distributed uniformly in space and have time intervals with a Gaussian distribution. The generated clumps move radially outward with a velocity law determined by a beta index, and the angular size of the clumps is assumed to keep fixed. By fitting the observational results and the volume filling factor, the clump velocity law index beta and clump ejection rate are inferred, and are found to be well constrained. In addition, the subpeak features on broad emission lines seem to support the clump ejection rate. Meanwhile, the fraction of the total mass loss rate that is contained in the clumps is obtained by fitting the observed polarization. We conclude that this picture for the clump properties produces a valuable diagnostic of WR wind structure.Comment: 28 pages, 13 figures, accepted for publication in RA

    Hubble Space Telescope observations of [O III] emission in nearby QSO2s : physical properties of the ionized outflows

    Get PDF
    We use Hubble Space Telescope/Space Telescope Imaging Spectrograph long-slit G430M and G750M spectra to analyse the extended [O iii] λ5007 emission in a sample of 12 nearby (z 1.6 × 1045 erg s−1) QSO2s. The purpose of the study is to determine the properties of the mass outflows of ionized gas and their role in active galactic nucleus feedback. We measure fluxes and velocities as functions of radial distances. Using cloudy models and ionizing luminosities derived from [O iii] λ5007, we are able to estimate the densities for the emission-line gas. From these results, we derive masses of [O iii]-emitting gas, mass outflow rates, kinetic energies, kinetic luminosities, momenta, and momentum flow rates as a function of radial distance for each of the targets. For the sample, masses are several times 103–107M⊙ and peak outflow rates are from 9.3 × 10−3 to 10.3M⊙yr−1. The peak kinetic luminosities are (3.4 × 10−8)–(4.9 × 10−4) of the bolometric luminosity, which does not approach the (5.0 × 10−3)–(5.0 × 10−2) range required by some models for efficient feedback. For Mrk 34, which has the largest kinetic luminosity of our sample, in order to produce efficient feedback there would have to be 10 times more [O iii]-emitting gas than that we detected at its position of maximum kinetic luminosity. Three targets show extended [O iii] emission, but compact outflow regions. This may be due to different mass profiles or different evolutionary histories

    Constraining Inflation

    Full text link
    Slow roll reconstruction is derived from the Hamilton-Jacobi formulation of inflationary dynamics. It automatically includes information from sub-leading terms in slow roll, and facilitatesthe inclusion of priors based on the duration on inflation. We show that at low inflationary scales the Hamilton-Jacobi equations simplify considerably. We provide a new classification scheme for inflationary models, based solely on the number of parameters needed to specify the potential, and provide forecasts for likely bounds on the slow roll parameters from future datasets. A minimal running of the spectral index, induced solely by the first two slow roll parameters (\epsilon and \eta) appears to be effectively undetectable by realistic Cosmic Microwave Background experiments. However, we show that the ability to detect this signal increases with the lever arm in comoving wavenumber, and we conjecture that high redshift 21 cm data may allow tests of second order consistency conditions on inflation. Finally, we point out that the second order corrections to the spectral index are correlated with the inflationary scale, and thus the amplitude of the CMB B-mode.Comment: 32 pages. v

    A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin

    Get PDF
    The plant hormone auxin regulates virtually every aspect of plant growth and development. Auxin acts by binding the F-box protein transport inhibitor response 1 (TIR1) and promotes the degradation of the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressors. Here we show that efficient auxin binding requires assembly of an auxin co-receptor complex consisting of TIR1 and an Aux/IAA protein. Heterologous experiments in yeast and quantitative IAA binding assays using purified proteins showed that different combinations of TIR1 and Aux/IAA proteins form co-receptor complexes with a wide range of auxin-binding affinities. Auxin affinity seems to be largely determined by the Aux/IAA. As there are 6 TIR1/AUXIN SIGNALING F-BOX proteins (AFBs) and 29 Aux/IAA proteins in Arabidopsis thaliana, combinatorial interactions may result in many co-receptors with distinct auxin-sensing properties. We also demonstrate that the AFB5–Aux/IAA co-receptor selectively binds the auxinic herbicide picloram. This co-receptor system broadens the effective concentration range of the hormone and may contribute to the complexity of auxin response

    Enhanced Water Quality Protection in Florida: An Analysis of the Regulatory and Practical Significance of an Outstanding Florida Water Designation

    Get PDF
    The Outstanding Florida Water (OFW) designation is the highest protection offered to a body of water by the state of Florida and is available only to those waters whose “natural attributes” warrant it. An OFW designation provides that water body with an antidegradation standard for certain activities affecting its water quality. Ordinarily, waters in Florida must meet the criteria established by rule for their respective class of water (based on the Florida water body classification system), regardless of existing water quality. Once a water body is designated as an OFW, however, a baseline water quality standard is set based on the ambient water quality of that particular water body. Because the OFW water quality standard may be higher than the rule-based water quality classification criteria, regulated activities that may affect the OFW are subject to additional scrutiny by regulatory agencies. In addition, those activities not necessarily occurring within an OFW, but that may “significantly degrade” an OFW, are subject to heightened scrutiny. The ability of current OFW regulation to fulfill the legislative intent behind the OFW designation remains uncertain. Judicial and administrative case law addressing OFWs provide little clear guidance in interpreting the statutory standards for the issuance of permits in or affecting OFWs, especially the “clearly in the public interest” standard. The Florida Department of Environmental Protection (FDEP) should consider adopting for the OFW Program the type of public interest benefits/costs balancing test currently provided for in Aquatic Preserves Program rules. This test creates a discernible distinction between the public interest standard for submerged lands activities that are within aquatic preserves as opposed to those occurring outside of the preserves. The effect of the OFW designation on water quality parameters subject to a narrative standard (nutrients), and on water quality parameters that are not currently established by rule (e.g. emerging pathogens of concern) has not been established. In addition OFWs do not appear to enjoy any special consideration as designated uses subject to impaired waters restoration. The definitions of non-degradation and of ambient water quality for the purposes of OFW designation should be amended to ensure that they contemplate degradation by contaminants other than the current rule–based list of water quality standards and criteria. The extent to which Best Management Practices (BMPs) for silviculture operations are sufficient to safeguard OFW water quality may require further research. In addition, the extent to which the OFW statute and rules recognize the ecological role and recreational value of riparian zones remains in question. This should be clarified by the FDEP

    Toward an Identification of Resources Influencing Habitat Use in a Multi-Specific Context

    Get PDF
    Interactions between animal behaviour and the environment are both shaping observed habitat use. Despite the importance of inter-specific interactions on the habitat use performed by individuals, most previous analyses have focused on case studies of single species. By focusing on two sympatric populations of large herbivores with contrasting body size, we went one step beyond by studying variation in home range size and identifying the factors involved in such variation, to define how habitat features such as resource heterogeneity, resource quality, and openness created by hurricane or forest managers, and constraints may influence habitat use at the individual level. We found a large variability among individual's home range size in both species, particularly in summer. Season appeared as the most important factor accounting for observed variation in home range size. Regarding habitat features, we found that (i) the proportion of area damaged by the hurricane was the only habitat component that inversely influenced roe deer home range size, (ii) this habitat type also influenced both diurnal and nocturnal red deer home range sizes, (iii) home range size of red deer during the day was inversely influenced by the biomass of their preferred plants, as were both diurnal and nocturnal core areas of the red deer home range, and (iv) we do not find any effect of resource heterogeneity on home range size in any case. Our results suggest that a particular habitat type (i.e. areas damaged by hurricane) can be used by individuals of sympatric species because it brings both protected and dietary resources. Thus, it is necessary to maintain the openness of these areas and to keep animal density quite low as observed in these hunted populations to limit competition between these sympatric populations of herbivores

    The Ionized Gas and Nuclear Environment in NGC 3783 II. Averaged HST/STIS and FUSE Spectra

    Get PDF
    We present observations of the intrinsic absorption in the Seyfert 1 galaxy NGC 3783 obtained with the STIS/HST and FUSE. We have coadded multiple STIS and FUSE observations to obtain a high S/N averaged spectrum spanning 905-1730 A. The averaged spectrum reveals absorption in O VI, N V, C IV, N III, C III and the Lyman lines up to LyE in the three blueshifted kinematic components previously detected in the STIS spectrum (at radial velocities of -1320, -724, and -548 km/s). The highest velocity component exhibits absorption in Si IV. We also detect metastable C III* in this component, indicating a high density in this absorber. We separate the individual covering factors of the continuum and emission-line sources as a function of velocity in each kinematic component using the LyA and LyB lines. Additionally, we find that the continuum covering factor varies with velocity within the individual kinematic components, decreasing smoothly in the wings of the absorption by at least 60%. The covering factor of Si IV is found to be less than half that of H I and N V in the high velocity component. Additionally, the FWHM of N III and Si IV are narrower than the higher ionization lines in this component. These results indicate there is substructure within this absorber. We derive a lower limit on the total column (N_H>=10^{19}cm^{-2}) and ionization parameter (U>=0.005) in the low ionization subcomponent of this absorber. The metastable-to-total C III column density ratio implies n_e~10^9 cm^{-3} and an upper limit on the distance of the absorber from the ionizing continuum of R<=8x10^{17} cm.Comment: 29 pages, 8 figures (Figures 1-3 are in color), Accepted for pulication in the Astrophysical Journa
    corecore