11,862 research outputs found

    Investigating the experience of flow in European Tour golfers

    Get PDF
    Objectives: This study explored how flow (commonly known as ā€œthe zoneā€) is experienced in elite golf, a sport which may be different to those studied previously due to its slower paced, stop-start nature. Design: In-depth, semi-structured interviews were employed to gain rich insight into the flow experiences of these participants. Method: The participants were 10 male professional golfers (Mean age = 37) who had competed on the European Tour for, on average, 10 full seasons. Five of these had won on the European Tour and two had Ryder Cup experience. The players were asked a range of questions relating to what the experience of flow is like within golf, and the interviews lasted, on average, 53 minutes. Results: Inductive thematic analysis was employed and 14 themes describing flow emerged, of which 11 displayed similarities to Csikszentmihalyiā€™s dimensions. Notably, however, these golfers reported an additional awareness of being in flow as it occurred, and even attempted to maximise the experience. Two other themes did not clearly fit with the original dimensions either: altered cognitive and kinaesthetic perceptions, and feeling calm and/or relaxed during the experience. Finally, the participants also perceived that they could observe others in flow, e.g., through changes in behaviour. Conclusions: These findings suggest possible revisions to the existing framework to more clearly describe the flow experience within elite golf and possibly other sporting contexts. The seemingly observable nature of flow may also be useful for researchers and, for example, within coaching

    Uniform Sampling for Matrix Approximation

    Full text link
    Random sampling has become a critical tool in solving massive matrix problems. For linear regression, a small, manageable set of data rows can be randomly selected to approximate a tall, skinny data matrix, improving processing time significantly. For theoretical performance guarantees, each row must be sampled with probability proportional to its statistical leverage score. Unfortunately, leverage scores are difficult to compute. A simple alternative is to sample rows uniformly at random. While this often works, uniform sampling will eliminate critical row information for many natural instances. We take a fresh look at uniform sampling by examining what information it does preserve. Specifically, we show that uniform sampling yields a matrix that, in some sense, well approximates a large fraction of the original. While this weak form of approximation is not enough for solving linear regression directly, it is enough to compute a better approximation. This observation leads to simple iterative row sampling algorithms for matrix approximation that run in input-sparsity time and preserve row structure and sparsity at all intermediate steps. In addition to an improved understanding of uniform sampling, our main proof introduces a structural result of independent interest: we show that every matrix can be made to have low coherence by reweighting a small subset of its rows

    Measurement of the Hyperfine Structure and Isotope Shifts of the 3s23p2 3P2 to 3s3p3 3Do3 Transition in Silicon

    Full text link
    The hyperfine structure and isotope shifts of the 3s23p2 3P2 to 3s3p3 3Do3 transition in silicon have been measured. The transition at 221.7 nm was studied by laser induced fluorescence in an atomic Si beam. For 29Si, the hyperfine A constant for the 3s23p2 3P2 level was determined to be -160.1+-1.3 MHz (1 sigma error), and the A constant for the 3s3p3 3Do3 level is -532.9+-0.6 MHz. This is the first time that these constants were measured. The isotope shifts (relative to the abundant isotope 28Si) of the transition were determined to be 1753.3+-1.1 MHz for 29Si and 3359.9+-0.6 MHz for 30Si. This is an improvement by about two orders of magnitude over a previous measurement. From these results we are able to predict the hyperfine structure and isotope shift of the radioactive 31Si atom, which is of interest in building a scalable quantum computer

    Hubble Space Telescope observations of Mars

    Get PDF
    Hubble Space Telescope (HST) afforded the possibility of resolving features as small as 100 km on the Martian surface even when it is at the far point of its orbit. Therefore it is ideally suited for monitoring seasonal changes on the red planet. The objectives research include: the study of Martian dust storms; use of images obtained through different filters to study the spectral reflectance of regions on the Martian surface; use of ultraviolet images and spectra to measure the amount of ozone in the planet's atmosphere as a function of location of the planet; use of images to study changes in the albedo of the Mars surface; and use of Planetary Camera images to study Martian clouds and to measure the opacity of the atmosphere

    Formally Integrating Real-Time Specification: A Research Proposal

    Get PDF
    To date, research in reasoning about timing properties of real-time programs has considered specification and implementation as separate issues. Specification uses formal methods; it abstracts out program execution, defining a specification that is independent of any machine-specific details (see [I, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] for examples). In this manner, it describes only the high-level timing requirements of processes in the system, and dependencies between them. One then typically attempts to prove the mutual consistency of these timing constraints, or to determine whether the constraints maintain a safety property critical to system correctness. However, since the model has abstracted out machine-specific details, these correctness proofs either assume very optimistic operating environment (such as a one to one assignment of processes to processors), or make very pessimistic assumptions (such as that all interleavings of process executions are possible). Since neither of these assumptions will hold in practice, these predictions about the behavior of the system may not be accurate. The implementation level captures this operating environment: a real- time system is characterized by such things as process schedulers, devices and local clocks. However, advances here have been primarily in scheduling theory (examples of which are [15, 16]) and language design (examples of which are [15, 16, 17, 18,19,20]). Unfortunately, since formal models have not been used at this level, proofs of time-related properties cannot be made. To construct these proofs, we must show that an implementation is correct with respect to a specification; timing properties that can be shown to hold about the specification will therefore be known to hold for the implementation. We therefore need to represent the implementation formally so as to prove that the implementation satisfies the specification. The proof of satisfaction requires a well-defined formal mapping between the implementation and specification models. We therefore propose to develop an integrated bi-level approach to the problem of reasoning about timing properties of real-time programs. At the specification level, we will use the Timed Acceptances model, a logically sound and complete axiom system which we have recently developed [21]. Using this model, the effect of interaction among time dependent processes can be precisely specified and then analyzed. We will then develop a formal implementation model (similar to the specification model) which captures operational behaviors: for example, the assignment of processes to processors, assumptions about scheduling and clock synchronization, and the different treatment of execution and wait times. A mapping will then be formulated between these two layers. The bulk of our proposed work will be to formulate the implementation layer and define a mapping between it and the specification layer. We also need to continue work on the Timed Acceptances model to facilitate its use as a specification model, and to provide hooks for mappings between the two layers. The rest of this proposal is organized as follows. The next section overviews related work in formal specification models. Section 3 describes our current specification model and proposed enhancements. We also detail the proposed implementation model, and required properties of the mappings between the two models. Section 4 provides a summary of the proposed research, and a yearly plan

    The largeā€scale freshwater cycle of the Arctic

    Get PDF
    This paper synthesizes our understanding of the Arctic\u27s largeā€scale freshwater cycle. It combines terrestrial and oceanic observations with insights gained from the ERAā€40 reanalysis and land surface and iceā€ocean models. Annual mean freshwater input to the Arctic Ocean is dominated by river discharge (38%), inflow through Bering Strait (30%), and net precipitation (24%). Total freshwater export from the Arctic Ocean to the North Atlantic is dominated by transports through the Canadian Arctic Archipelago (35%) and via Fram Strait as liquid (26%) and sea ice (25%). All terms are computed relative to a reference salinity of 34.8. Compared to earlier estimates, our budget features larger import of freshwater through Bering Strait and larger liquid phase export through Fram Strait. While there is no reason to expect a steady state, error analysis indicates that the difference between annual mean oceanic inflows and outflows (āˆ¼8% of the total inflow) is indistinguishable from zero. Freshwater in the Arctic Ocean has a mean residence time of about a decade. This is understood in that annual freshwater input, while large (āˆ¼8500 km3), is an order of magnitude smaller than oceanic freshwater storage of āˆ¼84,000 km3. Freshwater in the atmosphere, as water vapor, has a residence time of about a week. Seasonality in Arctic Ocean freshwater storage is nevertheless highly uncertain, reflecting both sparse hydrographic data and insufficient information on sea ice volume. Uncertainties mask seasonal storage changes forced by freshwater fluxes. Of flux terms with sufficient data for analysis, Fram Strait ice outflow shows the largest interannual variability

    In Defense of Monopoly

    Get PDF
    "In Defense of Monopoly offers an unconventional but empirically grounded argument in favor of market monopolies. Authors McKenzie and Lee claim that conventional, static models exaggerate the harm done by real-world monopolies, and they show why some degree of monopoly presence is necessary to maximize the improvement of human welfare over time. Inspired by Joseph Schumpeter's suggestion that market imperfections can drive an economy's long-term progress, In Defense of Monopoly defies conventional assumptions to show readers why an economic system's failure to efficiently allocate its resources is actually a necessary precondition for maximizing the system's long-term performance: the perfectly fluid, competitive economy idealized by most economists is decidedly inferior to one characterized by market entry and exit restrictions or costs. An economy is not a board game in which players compete for a limited number of properties, nor is it much like the kind of blackboard games that economists use to develop their monopoly models. As McKenzie and Lee demonstrate, the creation of goods and services in the real world requires not only competition but the prospect of gains beyond a normal competitive rate of return.

    Stellar Populations and Star Cluster Formation in Interacting Galaxies with the Advanced Camera for Surveys

    Full text link
    Pixel-by-pixel colour-magnitude and colour-colour diagrams - based on a subset of the Hubble Space Telescope Advanced Camera for Surveys Early Release Observations - provide a powerful technique to explore and deduce the star and star cluster formation histories of the Mice and the Tadpole interacting galaxies. In each interacting system we find some 40 bright young star clusters (20 <= F606W (mag) <= 25, with a characteristic mass of ~3 x 10^6 Msun), which are spatially coincident with blue regions of active star formation in their tidal tails and spiral arms. We estimate that the main events triggering the formation of these clusters occurred ~(1.5-2.0) x 10^8 yr ago. We show that star cluster formation is a major mode of star formation in galaxy interactions, with >= 35% of the active star formation in encounters occurring in star clusters. This is the first time that young star clusters have been detected along the tidal tails in interacting galaxies. The tidal tail of the Tadpole system is dominated by blue star forming regions, which occupy some 60% of the total area covered by the tail and contribute ~70% of the total flux in the F475W filter (decreasing to ~40% in F814W). The remaining pixels in the tail have colours consistent with those of the main disk. The tidally triggered burst of star formation in the Mice is of similar strength in both interacting galaxies, but it has affected only relatively small, spatially coherent areas.Comment: 23 pages in preprint form, 6 (encapsulated) postscript figures; accepted for publication in New Astronomy; ALL figures (even the grey-scale ones) need to be printed on a colour printer style files included; for full-resolution paper, see http://www.ast.cam.ac.uk/STELLARPOPS/ACSpaper
    • ā€¦
    corecore