193 research outputs found
Cyclic Di-GMP-Regulated Periplasmic Proteolysis of a Pseudomonas aeruginosa Type Vb Secretion System Substrate
We previously identified a second-messenger-regulated signaling system in the environmental bacterium Pseudomonas fluorescens which controls biofilm formation in response to levels of environmental inorganic phosphate. This system contains the transmembrane cyclic di-GMP (c-di-GMP) receptor LapD and the periplasmic protease LapG. LapD regulates LapG and controls the ability of this protease to process a large cell surface adhesin protein, LapA. While LapDG orthologs can be identified in divers
Recommended from our members
Enteropathogen antibody dynamics and force of infection among children in low-resource settings.
Little is known about enteropathogen seroepidemiology among children in low-resource settings. We measured serological IgG responses to eight enteropathogens (Giardia intestinalis, Cryptosporidium parvum, Entamoeba histolytica, Salmonella enterica, enterotoxigenic Escherichia coli, Vibrio cholerae, Campylobacter jejuni, norovirus) in cohorts from Haiti, Kenya, and Tanzania. We studied antibody dynamics and force of infection across pathogens and cohorts. Enteropathogens shared common seroepidemiologic features that enabled between-pathogen comparisons of transmission. Overall, exposure was intense: for most pathogens the window of primary infection was <3 years old; for highest transmission pathogens primary infection occurred within the first year. Longitudinal profiles demonstrated significant IgG boosting and waning above seropositivity cutoffs, underscoring the value of longitudinal designs to estimate force of infection. Seroprevalence and force of infection were rank-preserving across pathogens, illustrating the measures provide similar information about transmission heterogeneity. Our findings suggest antibody response can be used to measure population-level transmission of diverse enteropathogens in serologic surveillance
Recommended from our members
Mechanistic insight into the conserved allosteric regulation of periplasmic proteolysis by the signaling molecule cyclic-di-GMP
Stable surface adhesion of cells is one of the early pivotal steps in bacterial biofilm
formation, a prevalent adaptation strategy in response to changing environments. In Pseudomonas
fluorescens, this process is regulated by the Lap system and the second messenger cyclic-di-GMP.
High cytoplasmic levels of cyclic-di-GMP activate the transmembrane receptor LapD that in turn
recruits the periplasmic protease LapG, preventing it from cleaving a cell surface-bound adhesin,
thereby promoting cell adhesion. In this study, we elucidate the molecular basis of LapG regulation
by LapD and reveal a remarkably sensitive switching mechanism that is controlled by LapD's HAMP
domain. LapD appears to act as a coincidence detector, whereby a weak interaction of LapG with
LapD transmits a transient outside-in signal that is reinforced only when cyclic-di-GMP levels increase.
Given the conservation of key elements of this receptor system in many bacterial species, the results
are broadly relevant for cyclic-di-GMP- and HAMP domain-regulated transmembrane signaling.This is the publisher’s final pdf. The published article is copyrighted by the author(s) and published by eLife Sciences Publications Ltd. The published article can be found at: http://elifesciences.org/
Recommended from our members
Kinetic characterization of the soluble butane monooxygenase from Thauera butanivorans, formerly ‘Pseudomonas butanovora’
Soluble butane monooxygenase (sBMO), a three-component di-iron monooxygenase complex
expressed by the C2–C9 alkane-utilizing bacterium Thauera butanivorans, was kinetically
characterized by measuring substrate specificities for C1–C5 alkanes and product inhibition
profiles. sBMO has high sequence homology with soluble methane monooxygenase (sMMO) and
shares a similar substrate range, including gaseous and liquid alkanes, aromatics, alkenes and
halogenated xenobiotics. Results indicated that butane was the preferred substrate (defined by
kcat : Km ratios). Relative rates of oxidation for C1–C5 alkanes differed minimally, implying that
substrate specificity is heavily influenced by differences in substrate Km values. The low
micromolar Km for linear C2–C5 alkanes and the millimolar Km for methane demonstrate that
sBMO is two to three orders of magnitude more specific for physiologically relevant substrates of
T. butanivorans. Methanol, the product of methane oxidation and also a substrate itself, was found
to have similar Km and kcat values to those of methane. This inability to kinetically discriminate
between the C1 alkane and C1 alcohol is observed as a steady-state concentration of methanol
during the two-step oxidation of methane to formaldehyde by sBMO. Unlike methanol, alcohols
with chain length C2–C5 do not compete effectively with their respective alkane substrates.
Results from product inhibition experiments suggest that the geometry of the active site is
optimized for linear molecules four to five carbons in length and is influenced by the regulatory
protein component B (butane monooxygenase regulatory component; BMOB). The data suggest
that alkane oxidation by sBMO is highly specialized for the turnover of C3–C5 alkanes and the
release of their respective alcohol products. Additionally, sBMO is particularly efficient at
preventing methane oxidation during growth on linear alkanes ≥C2, despite its high sequence
homology with sMMO. These results represent, to the best of our knowledge, the first kinetic in
vitro characterization of the closest known homologue of sMM
Quaternary geology of the Northern Great Plains
The Great Plains physiographic province lies east of the Rocky Mountains and extends from southern Alberta and Saskatchewan nearly to the United States-Mexico border. This chapter covers only the northern part of the unglaciated portion of this huge region, from Oklahoma almost to the United StatesCanada border, a portion that herein will be referred to simply as the Northern Great Plains (Fig. 1). This region is in the rain shadow of the Rocky Mountains. Isoheyets are roughly longitudinal, and mean annual precipitation decreases from about 750 mm at the southeastern margin to less than 380 mm in the western and northern parts (Fig. 2). Winters typically are cold with relatively little precipitation, mostly as snow; summers are hot with increased precipitation, chiefly associated with movement of Pacific and Arctic air masses into warm, humid air masses from the Gulf of Mexico. Vegetation is almost wholly prairie grassland, due to the semiarid, markedly seasonal climate. The Northern Great Plains is a large region of generally low relief sloping eastward from the Rocky Mountains toward the Missouri and Mississippi Rivers. Its basic bedrock structure is a broad syncline, punctuated by the Black Hills and a few smaller uplifts, and by structural basins such as the Williston, Powder River, and Denver-Julesburg Basins (Fig. 3). Its surface bedrock is chiefly Cretaceous and Tertiary sediments, with small areas of older rocks in the Black Hills, central Montana, and eastern parts of Wyoming, Kansas, and Oklahoma. During the Laramide orogeny (latest Cretaceous through Eocene), while the Rocky Mountains and Black Hills were rising, synorogenic sediments (frequently with large amounts of volcanic ash from volcanic centers in the Rocky Mountains) were deposited in the subsiding Denver-Julesburg, Powder River, and other basins. From Oligocene to Miocene time, sedimentation generally slowed with declining tectonism and volcanism in the Rocky Mountains. However, since the later Miocene, epeirogenic uplift, probably associated with the East Pacific Rise, affected the Great Plains and particularly the Rocky Mountains. During the last 10 m.y. the Rocky Mountain front has risen 1.5 to 2 km, and the eastern margin of the Great Plains 100 to 500 m (Gable and Hatton, 1983), with half to one-quarter of these amounts during the last 5 m.y. Thus, during the later Miocene the Great Plains became a huge aggrading piedmont sloping gently eastward from the Rocky Mountains and Black Hills, with generally eastward drainage, on which the Ogallala Formation and equivalents was deposited. The Ogallala underlies the High Plains Surface, the highest and oldest geomorphic surface preserved in this region. It has been completely eroded along some parts of the western margin of the region (e.g., the Colorado Piedmont), but eastward, it (and its equivalents, such as the Flaxville gravels in Montana) locally is preserved as caprock or buried by Quaternary sediments (Alden, 1924, 1932; Howard, 1960; Stanley, 1971, 1976; Pearl, 1971; Scott, 1982; Corner and Diffendal, 1983; Diffendal and Corner, 1984; Swinehart and others, 1985; Aber, 1985). During the Pliocene, regional aggradation slowly changed to dissection by the principal rivers. In the western part of the region the rivers flowed eastward, but the continental drainage divide Figure 3. Major bedrock structures of the Northern Great Plains. extended northeast from the Black Hills through central South Dakota, far south of its present position. The ancestral upper Missouri, Little Missouri, Yellowstone, and Cheyenne Rivers drained northeast to Hudson Bay, whereas the ancestral White, Platte, and Arkansas Rivers went to the Gulf of Mexico (Fig 4A). Their courses are marked by scattered surface and subsurface gravel remnants; in Montana and North Dakota, deposits of the preglacial Missouri River and its tributaries are buried deeply beneath glacial and other sediments (Howard, 1960; Bluemle, 1972)
Demonstration of surface electron rejection with interleaved germanium detectors for dark matter searches
The following article appeared in Applied Physics Letters 103.16 (2013): 164105 and may be found at http://scitation.aip.org/content/aip/journal/apl/100/26/10.1063/1.4729825The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Surface event rejection capabilities were tested with two 210 Pb sources producing ∼130 beta decays/hr. In ∼800 live hours, no events leaked into the 8–115 keV signal region, giving upper limit leakage fraction 1.7 × 10−5 at 90% C.L., corresponding to < 0.6 surface event background in the future 200-kg SuperCDMS SNOLAB experiment.This work is supported in part by the National Science Foundation (Grant Nos. AST-9978911, NSF-0847342, PHY-1102795,NSF-1151869, PHY-0542066, PHY-0503729, PHY-0503629, PHY-0503641, PHY-0504224, PHY-0705052,PHY-0801708, PHY-0801712, PHY-0802575, PHY-0847342, PHY-0855299, PHY-0855525, and PHY-1205898), by the Department of Energy (Contract Nos. DE-AC03-76SF00098, DE-FG02-92ER40701, DE-FG02-94ER40823,DE-FG03-90ER40569, DE-FG03-91ER40618, and DESC0004022),by NSERC Canada (Grant Nos. SAPIN 341314 and SAPPJ 386399), and by MULTIDARK CSD2009-00064 and FPA2012-34694. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359, while SLAC is operated under Contract No. DE-AC02-76SF00515 with the United States Department of
Energy
Diurnal Rhythms Result in Significant Changes in the Cellular Protein Complement in the Cyanobacterium Cyanothece 51142
Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ∼30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for ∼5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms
Prevalence and Mechanisms of Mucus Accumulation in COVID-19 Lung Disease
Rationale: The incidence and sites of mucus accumulation, and molecular regulation of mucin gene expression, in COVID-19 lung disease have not been reported. Objectives: Characterize incidence of mucus accumulation and the mechanisms mediating mucin hypersecretion in COVID-19 lung disease. Methods: Airway mucus and mucins were evaluated in COVID-19 autopsy lungs by AB-PAS and immunohistochemical staining, RNA in situ hybridization, and spatial transcriptional profiling. SARS-CoV-2-infected human bronchial epithelial (HBE) cultures were utilized to investigate mechanisms of SARS-CoV-2-induced mucin expression and synthesis and test candidate countermeasures. Measurements and Main Results: MUC5B and variably MUC5AC RNA levels were increased throughout all airway regions of COVID-19 autopsy lungs, notably in the sub-acute/chronic disease phase following SARS-CoV-2 clearance. In the distal lung, MUC5B-dominated mucus plugging was observed in 90% of COVID-19 subjects in both morphologically identified bronchioles and microcysts, and MUC5B accumulated in damaged alveolar spaces. SARS-CoV-2-infected HBE cultures exhibited peak titers 3 days post inoculation, whereas induction of MUC5B/MUC5AC peaked 7-14 days post inoculation. SARS-CoV-2 infection of HBE cultures induced expression of EGFR ligands and inflammatory cytokines (e.g., IL-1α/β) associated with mucin gene regulation. Inhibiting EGFR/IL-1R pathways, or dexamethasone administration, reduced SARS-CoV-2-induced mucin expression. Conclusions: SARS-CoV-2 infection is associated with a high prevalence of distal airspace mucus accumulation and increased MUC5B expression in COVID-19 autopsy lungs. HBE culture studies identified roles for EGFR and IL-1R signaling in mucin gene regulation post SARS-CoV-2 infection. These data suggest that time-sensitive mucolytic agents, specific pathway inhibitors, or corticosteroid administration may be therapeutic for COVID-19 lung disease. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org.libproxy.lib.unc.edu/licenses/by-nc-nd/4.0/)
History, Commemoration, and Belief: Abraham Lincoln in American Memory, 1945-2001
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91765/1/Schuman-History_Commemoration_Belief.pd
- …