856 research outputs found

    Theoretical feedbacks between neoproterozoic glaciations and eukaryotic evolution

    Get PDF
    Physiological consequences of transitions in the level of selection explain the existence of Neoproterozoic lichen symbioses. Between-individual differentiation within groups causes physiological buffering, giving altruists higher fitness than cheaters in variable environments. Altruists increase from rarity. Reciprocal feedback between a genotype frequency and an abiotic state may be equivalent to kin selection. At contemporary degassing rate, biotic silicate weathering enhancement 10 – 20 times greater than present would have been required for a biologically-triggered snowball Earth. However, biotic enhancement could have compensated by declining abiotic silicate weathering rate at low temperatures – sufficiently to accentuate a tectonically-driven glaciation. Marine carbonate speciation causes a slushball ocean to become a net CO2 source at large reservoir sizes, making glacial duration shorter than a hard snowball by a factor of the atmospheric CO2­ degassing fraction. Equilibrated oceans require a carbonate weathering:burial ratio Wcarb : Bcarb > 1 for deglaciation by CO2(g) increase. If adequate biotic silicate weathering enhancement rapidly occurs after deglaciation, subsequent reglaciation will occur within 3 – 5Myrs. The contrast with the ~50Ma separating Neoproterozoic events invokes the elapse of a coevolutionary “succession time”, before which biotically-triggered reglaciation is improbable. Low post-glacial silicate weathering is consistent with Si-depleted cap carbonates. Phanerozoic reduction in glacial susceptibility resulted from physiological evolution of biotic weathering and/or calcification. Emergence of terminal cellular differentiation in Ediacara/Metazoa required an environmental context E, provided by Neoproterozoic glaciations, in which the high fitness cost was adaptive. Restriction of the biosphere to refugia experiencing extreme, repeated founder effects raised kin selection for altruism. Between-group isolation limited cheat migration, accentuating group viability selection for altruism. Both processes occurred globally, over multi-million year timescales; explaining subsequent proliferation of Ediacaran macrobiota

    Improved Semileptonic Form Factor Calculations in Lattice QCD

    Full text link
    We investigate the computational efficiency of two stochastic based alternatives to the Sequential Propagator Method used in Lattice QCD calculations of heavy-light semileptonic form factors. In the first method, we replace the sequential propagator, which couples the calculation of two of the three propagators required for the calculation, with a stochastic propagator so that the calculations of all three propagators are independent. This method is more flexible than the Sequential Propagator Method but introduces stochastic noise. We study the noise to determine when this method becomes competitive with the Sequential Propagator Method, and find that for any practical calculation it is competitive with or superior to the Sequential Propagator Method. We also examine a second stochastic method, the so-called ``one-end trick", concluding it is relatively inefficient in this context. The investigation is carried out on two gauge field ensembles, using the non-perturbatively improved Wilson-Sheikholeslami-Wohlert action with N_f=2 mass-degenerate sea quarks. The two ensembles have similar lattice spacings but different sea quark masses. We use the first stochastic method to extract O(a){\mathcal O}(a)-improved, matched lattice results for the semileptonic form factors on the ensemble with lighter sea quarks, extracting f_+(0)

    Probing the Evolution of the Galaxy Interaction/Merger Rate Using Collisional Ring Galaxies

    Full text link
    We present the results from our program to determine the evolution of the galaxy interaction/merger rate with redshift using the unique star-forming characteristics of collisional ring galaxies. We have identified 25 distant collisional ring galaxy candidates (CRGCs) in a total of 162 deep Hubble Space Telescope Wide Field/Planetary Camera-2 images obtained from the HST Archives. Based on measured and estimated redshifts, these 25 CRGCs all lie in the redshift interval of 0.1 < z < 1. Using the local collisional ring galaxy volume density and the new ``standard'' cosmology, we find that in order to account for the number of identified CRGCs in our surveyed fields, the galaxy interaction/merger rate, parameterized as (1 + z)^m, must increase steeply with redshift.We determine a minimum value of m = 5.2 ±\pm 0.7, though m could be as high as 7 or 8. We can rule out a non-evolving (m = 0) and weakly evolving (m = 1-2) galaxy interaction/merger rate at greater than the 4 sigma level of confidence.Comment: Accepted in the Astrophysical Journal (11 pages, 4 figures). Higher resolution version of the figures is available at http://www.astro.cornell.edu/~vassilis/papers

    Modeling the source of GW150914 with targeted numerical-relativity simulations

    Get PDF
    In fall of 2015, the two LIGO detectors measured the gravitational wave signal GW150914, which originated from a pair of merging black holes. In the final 0.2 seconds (about 8 gravitational-wave cycles) before the amplitude reached its maximum, the observed signal swept up in amplitude and frequency, from 35 Hz to 150 Hz. The theoretical gravitational-wave signal for merging black holes, as predicted by general relativity, can be computed only by full numerical relativity, because analytic approximations fail near the time of merger. Moreover, the nearly-equal masses, moderate spins, and small number of orbits of GW150914 are especially straightforward and efficient to simulate with modern numerical-relativity codes. In this paper, we report the modeling of GW150914 with numerical-relativity simulations, using black-hole masses and spins consistent with those inferred from LIGO's measurement. In particular, we employ two independent numerical-relativity codes that use completely different analytical and numerical methods to model the same merging black holes and to compute the emitted gravitational waveform; we find excellent agreement between the waveforms produced by the two independent codes. These results demonstrate the validity, impact, and potential of current and future studies using rapid-response, targeted numerical-relativity simulations for better understanding gravitational-wave observations.Comment: 11 pages, 3 figures, submitted to Classical and Quantum Gravit

    Pincer-plus-one ligands in self-assembly with palladium(ii): a molecular square and a molecular tetrahedron

    Get PDF
    The combination of a palladium(ii) precursor with a diimine-phenol ligand and an oxidant (H2O2 or O2) under different conditions has, serendipitously, given both a molecular square and a molecular tetrahedron by self-assembly of building blocks comprising palladium(ii) centres coordinated to the oxidised forms of the ligand

    Analysis of trace metals (Cu, Cd, Pb, and Fe) in seawater using single batch nitrilotriacetate resin extraction and isotope dilution inductively coupled plasma mass spectrometry

    Get PDF
    A simple and accurate low-blank method has been developed for the analysis of total dissolved copper, cadmium, lead, and iron in a small volume (1.3–1.5 mL per element) of seawater. Pre-concentration and salt-separation of a stable isotope spiked sample are achieved by single batch extraction onto nitrilotriacetate (NTA)-type Superflow® chelating resin beads (100–2400 beads depending on the element). Metals are released into 0.1–0.5 M HNO[subscript 3], and trace metal isotope ratios are determined by ICPMS. The benefit of this method compared to our previous Mg(OH)2 coprecipitation method is that the final matrix is very dilute so cone-clogging and matrix sensitivity suppression are minimal, while still retaining the high accuracy of the isotope dilution technique. Recovery efficiencies are sensitive to sample pH, number of resin beads added, and the length of time allowed for sample–resin binding and elution; these factors are optimized for each element to yield the highest recovery. The method has a low procedural blank and high sensitivity sufficient for the analysis of pM–nM open-ocean trace metal concentrations. Application of this method to samples from the Bermuda Atlantic Time-Series Study station provides oceanographically consistent Cu, Cd, Pb, and Fe profiles that are in good agreement with other reliable data for this site. In addition, the method can potentially be modified for the simultaneous analysis of multiple elements, which will be beneficial for the analysis of large number of samples.National Science Foundation (U.S.) (NSF frant OCE-0751409)Kuwait Foundation for the Advancement of SciencesNational Science Foundation (U.S.) (NSF award OCE-0751409)National Science Foundation (U.S.) (NSF award OCE-0926197

    A selected ion flow tube study of the reactions of gas-phase cations with PSCl3

    Get PDF
    A selected ion flow tube was used to investigate the positive ion chemistry of thiophosphoryl chloride, PSCl3_3. Rate coefficients and ion product branching ratios have been determined at room temperature for reactions with nineteen cations ; H3_3O+^+, CF3+_3^+, CF+^+, NO+^+, NO2+_2^+, SF2+_2^+, SF+^+, CF2+_2^+, O2+_2^+, H2_2O+^+, N2_2O+^+, O+^+, CO2+_2^+, CO+^+, N+^+, N2+_2^+, Ar+^+, F+^+ and Ne+^+ (in order of increasing recombination energy). Complementary data described in the previous paper have been obtained for this molecule via the observation of threshold photoelectron photoion coincidences. For ions whose recombination energies are in the range 10-22 eV, comparisons are made between the product ion branching rations of PSCl3_3 from photoionisation and from ion-molecule reactions. In most instances, the data from the two experiments are well correlated, suggesting that long-range charge transfer is the dominant mechanism for these ion-molecule reactions ; the agreement is particularly good for the atomic ions Ar+^+, F+^+ and Ne+^+. Some reactions (e.g. O2+_2^+ + PSCl3_3), however, exhibit significant differences; short-range charge transfer must then be occurring following the formation of an ion-molecule complex. For ions whose recombination energies are less than 10 eV (i.e. H3_3O+^+, CF3+_3^+, CF+^+ and NO+^+), reactions can only occur via a chemical process in which bonds are broken and formed, because the recombination energy of the cation is less than the ionisation energy of PSCl3_3

    Differences in toxicity and accumulation of metal from copper oxide nanomaterials compared to copper sulphate in zebrafish embryos: Delayed hatching, the chorion barrier and physiological effects

    Get PDF
    The mechanisms of toxicity of engineered nanomaterials (ENMs) to the early life stages of freshwater fish, and the relative hazard compared to dissolved metals, is only partially understood. In the present study, zebrafish embryos were exposed to lethal concentrations of copper sulphate (CuSO4) or copper oxide (CuO) ENMs (primary size ∼15 nm), and then the sub-lethal effects investigated at the LC10 concentrations over 96 h. The 96 h-LC50 (mean ± 95% CI) for CuSO4 was 303 ± 14 µg Cu L−1 compared to 53 ± 9.9 mg L−1 of the whole material for CuO ENMs; with the ENMs being orders of magnitude less toxic than the metal salt. The EC50 for hatching success was 76 ± 11 µg Cu L−1 and 0.34 ± 0.78 mg L−1 for CuSO4 and CuO ENMs respectively. Failure to hatch was associated with bubbles and foam-looking perivitelline fluid (CuSO4), or particulate material smothering the chorion (CuO ENMs). In the sub-lethal exposures, about 42% of the total Cu as CuSO4 was internalised, as measured by Cu accumulation in the de-chorionated embryos, but for the ENMs exposures, nearly all (94%) of the total Cu was associated with chorion; indicating the chorion as an effective barrier to protect the embryo from the ENMs in the short term. Both forms of Cu exposure caused sodium (Na+) and calcium (Ca2+), but not magnesium (Mg2+), depletion from the embryos; and CuSO4 caused some inhibition of the sodium pump (Na+/K+-ATPase) activity. Both forms of Cu exposure caused some loss of total glutathione (tGSH) in the embryos, but without induction of superoxide dismutase (SOD) activity. In conclusion, CuSO4 was much more toxic than CuO ENMs to early life stage zebrafish, but there are subtle differences in the exposure and toxic mechanisms for each substance
    corecore