In fall of 2015, the two LIGO detectors measured the gravitational wave
signal GW150914, which originated from a pair of merging black holes. In the
final 0.2 seconds (about 8 gravitational-wave cycles) before the amplitude
reached its maximum, the observed signal swept up in amplitude and frequency,
from 35 Hz to 150 Hz. The theoretical gravitational-wave signal for merging
black holes, as predicted by general relativity, can be computed only by full
numerical relativity, because analytic approximations fail near the time of
merger. Moreover, the nearly-equal masses, moderate spins, and small number of
orbits of GW150914 are especially straightforward and efficient to simulate
with modern numerical-relativity codes. In this paper, we report the modeling
of GW150914 with numerical-relativity simulations, using black-hole masses and
spins consistent with those inferred from LIGO's measurement. In particular, we
employ two independent numerical-relativity codes that use completely different
analytical and numerical methods to model the same merging black holes and to
compute the emitted gravitational waveform; we find excellent agreement between
the waveforms produced by the two independent codes. These results demonstrate
the validity, impact, and potential of current and future studies using
rapid-response, targeted numerical-relativity simulations for better
understanding gravitational-wave observations.Comment: 11 pages, 3 figures, submitted to Classical and Quantum Gravit