463 research outputs found

    Tamm-Horsfall Protein Regulates Mononuclear Phagocytes in the Kidney

    Get PDF
    Tamm-Horsfall protein (THP), also known as uromodulin, is a kidney-specific protein produced by cells of the thick ascending limb of the loop of Henle. Although predominantly secreted apically into the urine, where it becomes highly polymerized, THP is also released basolaterally, toward the interstitium and circulation, to inhibit tubular inflammatory signaling. Whether, through this latter route, THP can also regulate the function of renal interstitial mononuclear phagocytes (MPCs) remains unclear, however. Here, we show that THP is primarily in a monomeric form in human serum. Compared with wild-type mice, THP-/- mice had markedly fewer MPCs in the kidney. A nonpolymerizing, truncated form of THP stimulated the proliferation of human macrophage cells in culture and partially restored the number of kidney MPCs when administered to THP-/- mice. Furthermore, resident renal MPCs had impaired phagocytic activity in the absence of THP. After ischemia-reperfusion injury, THP-/- mice, compared with wild-type mice, exhibited aggravated injury and an impaired transition of renal macrophages toward an M2 healing phenotype. However, treatment of THP-/- mice with truncated THP after ischemia-reperfusion injury mitigated the worsening of AKI. Taken together, our data suggest that interstitial THP positively regulates mononuclear phagocyte number, plasticity, and phagocytic activity. In addition to the effect of THP on the epithelium and granulopoiesis, this new immunomodulatory role could explain the protection conferred by THP during AKI

    The common parasite Toxoplasma gondii induces prostatic inflammation and microglandular hyperplasia in a mouse model

    Get PDF
    BACKGROUND: Inflammation is the most prevalent and widespread histological finding in the human prostate, and associates with the development and progression of benign prostatic hyperplasia and prostate cancer. Several factors have been hypothesized to cause inflammation, yet the role each may play in the etiology of prostatic inflammation remains unclear. This study examined the possibility that the common protozoan parasite Toxoplasma gondii induces prostatic inflammation and reactive hyperplasia in a mouse model. METHODS: Male mice were infected systemically with T. gondii parasites and prostatic inflammation was scored based on severity and focality of infiltrating leukocytes and epithelial hyperplasia. We characterized inflammatory cells with flow cytometry and the resulting epithelial proliferation with bromodeoxyuridine (BrdU) incorporation. RESULTS: We found that T. gondii infects the mouse prostate within the first 14 days of infection and can establish parasite cysts that persist for at least 60 days. T. gondii infection induces a substantial and chronic inflammatory reaction in the mouse prostate characterized by monocytic and lymphocytic inflammatory infiltrate. T. gondii-induced inflammation results in reactive hyperplasia, involving basal and luminal epithelial proliferation, and the exhibition of proliferative inflammatory microglandular hyperplasia in inflamed mouse prostates. CONCLUSIONS: This study identifies the common parasite T. gondii as a new trigger of prostatic inflammation, which we used to develop a novel mouse model of prostatic inflammation. This is the first report that T. gondii chronically encysts and induces chronic inflammation within the prostate of any species. Furthermore, T. gondii-induced prostatic inflammation persists and progresses without genetic manipulation in mice, offering a powerful new mouse model for the study of chronic prostatic inflammation and microglandular hyperplasia

    Homogeneous Subgroups of Young Children with Autism Improve Phenotypic Characterization in the Study to Explore Early Development

    Get PDF
    The objective of this study was to identify homogenous classes of young children with autism spectrum disorder (ASD) to improve phenotypic characterization. Children were enrolled in the Study to Explore Early Development between 2 and 5 years of age. 707 children were classified with ASD after a comprehensive evaluation with strict diagnostic algorithms. Four classes of children with ASD were identified from latent class analysis: mild language delay with cognitive rigidity, mild language and motor delay with dysregulation, general developmental delay, and significant developmental delay with repetitive motor behaviors. We conclude that a four-class phenotypic model of children with ASD best describes our data and improves phenotypic characterization of young children with ASD. Implications for screening, diagnosis, and research are discussed

    Individualized breast cancer characterization through single cell analysis of tumor and adjacent-normal cells

    Get PDF
    There is a need to individualize assays for tumor molecular phenotyping, given variations in the differentiation status of tumor and normal tissues in different patients. To address this, we performed single-cell genomics of breast tumors and adjacent normal cells propagated for a short duration under growth conditions that enable epithelial reprogramming. Cells analyzed were either unselected for a specific subpopulation or phenotypically defined as undifferentiated and highly clonogenic ALDH+/CD49f+/EpCAM+ luminal progenitors, which express both basal cell and luminal cell-enriched genes. We analyzed 420 tumor cells and 284 adjacent normal cells for expression of 93 genes that included a PAM50 intrinsic subtype classifier and stemness-related genes. ALDH+/CD49f+/EpCAM+ tumor and normal cells clustered differently compared to unselected tumor and normal cells. PAM50 gene-set analyses of ALDH+/CD49f+/EpCAM+ populations efficiently identified major and minor clones of tumor cells, with the major clone resembling clinical parameters of the tumor. Similarly, a stemness-associated gene set identified clones with divergent stemness pathway activation within the same tumor. This refined expression profiling technique distinguished genes truly deregulated in cancer from genes that identify cellular precursors of tumors. Collectively, the assays presented here enable more precise identification of cancer-deregulated genes, allow for early identification of therapeutically targetable tumor cell subpopulations, and ultimately provide a refinement of precision therapeutics for cancer treatment

    Kinetics and mechanism of the hydrolysis and rearrangement processes within the assembly-disassembly-organization-reassembly synthesis of zeolites

    Get PDF
    The authors would like to thank the EPSRC (grants: EP/K025112/1; EP/K005499/1; EP/K503162/1; EP/N509759/1) for funding opportunities. R.E.M., and M.M. would like to acknowledge OP VVV "Excellent Research Teams", project No. CZ.02.1.01/0.0/0.0/15_003/0000417 - CUCAM. We would like to thank the ERC (Advanced Grant 787073 “ADOR”).The hydrolysis (disassembly, D) and rearrangement (organization, O) steps of the assembly-disassembly-organization-reassembly (ADOR) process for the synthesis of zeolites have been studied. Germanium–rich UTL was subjected to hydrolysis conditions in water to understand the effects of temperature (100, 92, 85, 81, 77, and 70 °C). Samples were taken periodically over an 8–37 h period and each sample was analyzed by powder X-ray diffraction. The results show that the hydrolysis step is solely dependent on the presence of liquid water, whereas the rearrangement is dependent on the temperature of the system. The kinetics have been investigated using the Avrami-Erofeev model. With increasing temperature, an increase in rate of reaction for the rearrangement step was observed and the Arrhenius equation was used to ascertain an apparent activation energy for the rearrangement from the kinetic product of the disassembly (IPC-1P) to the thermodynamic product of the rearrangement (IPC-2P). From this information a mechanism for this transformation can be postulated.Publisher PDFPeer reviewe

    A procedure for identifying possible products in the Assembly-Disassembly-Organisation-Reassembly (ADOR) synthesis of zeolites

    Get PDF
    The authors would like to thank the EPSRC (grants: EP/K025112/1; EP/K005499/1; EP/K503162/1; EP/N509759/1) for funding opportunities. R.E.M., J.C. and M.M. would like to acknowledge OP VVV "Excellent Research Teams", project No. CZ.02.1.01/0.0/0.0/15_003/0000417 - CUCAM. S.E.A. would like to thank the Royal Society and the Wolfson Foundation for a merit award. J.C. acknowledges the Czech Science Foundation (P106/12/G015).High-silica zeolites, some of the most important and widely used catalysts in industry, have potential for application across a wide range of traditional and emerging technologies. The many structural topologies of zeolites have a variety of potential uses, so a strong drive to create new zeolites exists. Here, we present a protocol, the assembly–disassembly–organization–reassembly (ADOR) process, for a relatively new method of preparing these important solids. It allows the synthesis of new high-silica zeolites (Si/Al >1,000), whose synthesis is considered infeasible with traditional (solvothermal) methods, offering new topologies that may find novel applications. We show how to identify the optimal conditions (e.g., duration of reaction, temperature, acidity) for ADOR, which is a complex process with different possible outcomes. Following the protocol will allow researchers to identify the different products that are possible from a reaction without recourse to repetitive and time-consuming trial and error. In developing the protocol, germanium-containing UTL zeolites were subjected to hydrolysis conditions using both water and hydrochloric acid as media, which provides an understanding of the effects of temperature and pH on the disassembly (D) and organization (O) steps of the process that define the potential products. Samples were taken from the ongoing reaction periodically over a minimum of 8 h, and each sample was analyzed using powder X-ray diffraction to yield a time course for the reaction at each set of conditions; selected samples were analyzed using transmission electron microscopy and solid-state NMR spectroscopy.PostprintPeer reviewe

    Reproductive factors and hormone use and risk of adult gliomas

    Get PDF
    Previous research suggests there may be a hormonal influence on glioma risk as evidenced by lower rates in females, change in incidence rates around ages at menarche and menopause and presence of hormone receptors in glial tumors. Using the large San Francisco Bay Area Adult Glioma Study, we investigated whether reported reproductive factors and hormone use were associated with gliomas overall or with histologic subtypes among female cases (n=619) and controls (n=650). We found that reproductive factors were generally not associated with gliomas. Weak to moderately elevated odds ratios were observed for self-reported later age at menarche (14+ years old versus 12–13 years old: adjusted odds ratio (AOR) = 1.39, 95% confidence interval (CI): 1.02 –1.89), particularly for non-glioblastoma histologies (AOR = 1.64, 95% CI: 1.11–2.43). Inverse associations were observed for ever self-reported use of exogenous hormones (oral contraceptive use: AOR = 0.72, 95% CI: 0.53–0.99; postmenopausal hormone use: AOR = 0.56, CI: 0.37–0.84). However, cumulative hormone exposure defined multiple ways demonstrated no clear pattern of association. The results of this study suggest that any protective effect of hormones on gliomas may be limited to exogenous hormones, but a more detailed history of exogenous hormone use are needed to confirm findings
    • …
    corecore