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Abstract

There is a need to individualize assays for tumor molecular phenotyping, given variations in the 

differentiation status of tumor and normal tissues in different patients. To address this, we 

performed single-cell genomics of breast tumors and adjacent normal cells propagated for a short 

duration under growth conditions that enable epithelial reprogramming. Cells analyzed were either 

unselected for a specific subpopulation or phenotypically defined as undifferentiated and highly 

clonogenic ALDH+/CD49f+/EpCAM+ luminal progenitors, which express both basal cell and 

luminal cell-enriched genes. We analyzed 420 tumor cells and 284 adjacent normal cells for 

expression of 93 genes that included a PAM50 intrinsic subtype classifier and stemness-related 

genes. ALDH+/CD49f+/EpCAM+ tumor and normal cells clustered differently compared to 

unselected tumor and normal cells. PAM50 gene-set analyses of ALDH+/CD49f+/EpCAM+ 

populations efficiently identified major and minor clones of tumor cells, with the major clone 

resembling clinical parameters of the tumor. Similarly, a stemness-associated gene set identified 
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clones with divergent stemness pathway activation within the same tumor. This refined expression 

profiling technique distinguished genes truly deregulated in cancer from genes that identify 

cellular precursors of tumors. Collectively, the assays presented here enable more precise 

identification of cancer-deregulated genes, allow for early identification of therapeutically 

targetable tumor cell subpopulations, and ultimately provide a refinement of precision therapeutics 

for cancer treatment.
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Introduction

Gene expression-based molecular subclassification of tumors has gained clinical acceptance 

over the years and several tools have been commercialized for clinical use. Oncotype DX®, 

ProSigna® (PAM50) and MammaPrint (70-gene signature) are few such assays used in 

breast cancer management (1–4). A recent study suggested that MammaPrint assay aids in 

treatment decisions in early stage breast cancer, particularly to identify patients who may not 

need chemotherapy (5). Superiority of few of these assays in tumor classification compared 

to traditional immunohistochemistry based tumor classification is under debate. For 

example, while an earlier report claimed that PAM50 gathers more clinical information than 

immunohistochemistry of hormone receptors or ki67 (6), a recent study disputed such a 

claim (7).

While tumor classification based on gene expression patterns has been valuable clinically, 

further progress in these assays are needed to address two clinically important issues. First, 

it has been difficult to discern whether gene expression patterns in tumors that led to subtype 

classification are acquired due to genome aberrations or reflect cell type origin of tumors. 

Recent discovery of enormous inter-individual variation in gene expression in healthy tissues 

due to single nucleotide polymorphism in the regulatory regions of genomes makes it even 

harder to identify mutation-driven gene expression changes when normal cells from the 

same individual are not available for comparison (8,9). Second, tumor heterogeneity is a 

major clinical concern and the gene expression based assays may identify only major clones 

of the tumor. Therefore, an ideal assay should be able to identify cancer-specific aberration 

in gene expression and identify both major and minor clones of tumor cells.

As an initial step to address the above issues, we combined the latest progress in propagating 

normal and tumor cells from the same patient using an epithelial reprogramming assay (10) 

and single cell genomics of PAM50/stem cell associated genes (11). Unlike previously 

reported mammary epithelial growth conditions, which favors outgrowth of basal epithelial 

cells, reprogramming assay allows growth of stem, luminal progenitor and mature cells (12–

14). Assays that allow growth of breast epithelial cells of different differentiation state are 

essential because most breast cancers including basal-like breast cancers are suggested to 

originate from luminal progenitors and then differentiate/dedifferentiate into specific 

subtypes (15–18). We have recently demonstrated that tumor and adjacent normal cells are 
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in different differentiation state, which complicates our ability to distinguish mutation-driven 

gene expression changes in tumor from changes due to differences in differentiation state 

(14). In normal breast, >2000 genes are differentially expressed between stem/progenitor 

and differentiated cells (19) and these differences alone can account for tumor to normal 

tissue gene expression variations noted in large scale studies. To partially overcome this 

limitation, comparison between normal and tumors were done two ways. Assays included 

either bulk populations of epithelial cells or flow cytometrically enriched ALDH+/CD49f+/

EpCAM+ adjacent normal and tumor cells. In normal breast, these cells are considered to be 

undifferentiated highly clonogenic luminal progenitors that express both basal cell and 

luminal cell enriched genes (20). These assays, performed with cells from four tumors and 

adjacent normal tissues, enabled us to identify major and minor tumor clones and distinguish 

genes aberrantly expressed in tumors from genes whose expression pattern in tumor 

mirrored expression pattern in a subset of normal cells, which are likely the cellular 

precursors of tumors.

Materials and Methods

Primary tissues, culturing by reprogramming assay, and flow cytometry

Breast tissues used were de-identified and the Indiana University Institutional Review Board 

considered the protocol non-human subjects. Freshly obtained or cryopreserved tissues were 

minced, digested and subjected to culturing under modified reprogramming assay condition, 

as we have described recently (14). All cases used in the study were from mastectomy such 

that adjacent normal tissues were from regions as distant as possible from the tumor. Breast 

epithelial cells were collected by trypsinization and subjected to flow cytometry using 

antibodies described previously (14).

Single cell qRT-PCR

We used the C1 Single-Cell Auto Prep System (Fluidigm) for single-cell capture and pre-

amplification according to the manufacturer’s instructions (protocol 100-4904 K1). Both 

adjacent normal and tumor cells were grown for similar duration and in the same media and 

collected by flow cytometry before loading into the Integrated Fluidic Circuit (IFC). Briefly, 

a pool of all primers was prepared (100 μM). A lysis final mix, a reverse-transcriptase (RT) 

final mix and a pre-amplification (PreAmp) final mix were prepared and stored on ice. Next, 

the IFC for normal medium-size single cells (10 to 17 μm in diameter; Fluidigm, part 

number 100-5479), or the IFC for tumor large-size single cells (17–25μm in diameter; 

Fluidigm, part number 100-5758) was primed by adding C1 collection reagent, preloading 

reagent, blocking reagent and wash buffer into the IFC, and the IFC was placed into the C1 

Single-Cell Auto Prep System and the script ‘STA:Prime’ was run. Priming lasted 20 min, 

during which time cells were prepared for loading. Cells were pelleted and media was 

removed to create a concentration of 300,000 cells/mL. The single-cell suspension was 

mixed with a 3:2 ratio of Suspension Reagent (Fluidigm). After priming was completed, 

blocking and priming solutions were removed and 6 μl of cell mix was loaded onto the IFC. 

The IFC was placed back into the C1, and the script ‘STA:Cell Load’ was run. After cell 

loading was complete, the IFC was removed and single-cell capture sites were viewed using 

a microscope. Empty capture sites were noted, and the IFC was loaded with harvest reagent, 
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lysis final mix, RT final mix, and PreAmp final mix. The IFC was placed back into the C1, 

and the script ‘STA:PreAmp’ was run. After pre-amplification, the IFC was removed from 

the C1 and 3 μl of cDNA from each single cell was removed from individual collection wells 

and diluted in 25 μl of DNA suspension buffer (Fluidigm). The BioMark HD System 

(Fluidigm, protocol 68000088 K1) performs 96 individual qPCR reactions on the pre-

amplified cDNA from every single cell by utilizing 96 × 96 Dynamic Array Gene 

Expression IFCs (Fluidigm, part number BMK-M-96.96). For the qPCR reactions, SsoFast 

EvaGreen Supermix with Low ROX (Bio-Rad, part number 172-5211) and DNA Binding 

Dye (Fluidigm, part number 100-7609) were combined with individual cDNA samples. The 

cDNA mix was loaded into one side of the IFC, and primer pairs were loaded into the other 

side. The Juno System (Fluidigm) was used to prime the IFC and to distribute cDNA mix 

and primer pairs into reaction chambers inside the IFC. The IFC was then transferred into 

the BioMark HD System where qPCR reactions were controlled. Data from wells that 

contained more than one cell or non-viable cells were excluded from the analyses.

Data analyses

Real Time PCR Analysis software is a data analysis tool available from Fluidigm as part of 

the Singular Analysis Toolset and can be found at https://www.fluidigm.com/software. This 

toolset was built on the open source software R (Version 3.0.2). These software packages 

were used together to annotate and analyze data files generated from the BioMark HD. 

Hierarchical clustering (HC) was used to identify co-expressed genes. Heatmaps and violin 

plots were generated to compare sample groups. Analysis of variance (ANOVA) identified 

differentially expressed genes (Table S1). Principal component analysis (PCA) plots were 

generated to analyze outliers. Differentially expressed genes were subjected to Ingenuity 

pathway analyses (Ingenuity.com) to identify signaling networks uniquely active in tumor 

cells.

Immunohistochemistry

Immunohistochemistry procedure for MMP2 (antibody from Fisher Scientific #35-130-0Z) 

and quantitation have been described previously (21).

Results

Single cell genomics in cancer are mostly being used to decipher tumor heterogeneity, to 

develop evolutionary tree, and to map cellular hierarchy (11,22,23). This technique has also 

been used to detect clonal selection in patient-derived breast cancer xenografts (24). While 

DNA-based single cell genomics, which only compares copy number variations and 

mutations, have seen enormous progress with respect to detection and data analysis, there 

are several limitations in the use of this technology for RNA-based studies including inter-

individual variation in gene expression (9,25) and differences in differentiation state of 

tumor and normal (14). While perfection in elucidating cancer-specific gene expression 

changes may be impossible to achieve, refinement is possible by co-adapting several latest 

technologies. Figure 1A provides a schematic view of our approach towards achieving these 

goals.
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We propagated tumor and the adjacent normal tissues from four patients for a short duration 

using epithelial reprogramming assay (10). In our previous study, we have shown that in 

vitro propagation does not introduce any mutations and potentially allows expansion of 

minor clones (14). Tumors in Patient 1 and Patient 2 were ER+/Progesterone Receptor + (PR

+), whereas Patient 3 had an ER+/PR−/HER2+ tumor. Patient 4 had ER+/PR+ tumor with 

extensive metastasis. Patient 2 tumor also expressed HER2 at moderately higher levels (2+). 

We first performed phenotypic characterization of tumor and adjacent normal cells using 

CD49f and EpCAM antibodies. CD49f+/EpCAM−, CD49f+/EpCAM+ and CD49f−/

EpCAM+ cells are enriched for cells with stem/basal, luminal progenitor, and mature/

differentiated/non-clonogenic properties, respectively (26,27). As expected, tumors of 

Patients 1 and 2 had higher levels of differentiated cells compared to their corresponding 

adjacent normal cells, whereas both tumor and the adjacent normal cells of patient 3 were 

enriched for luminal progenitor cells (Figure 1B). Because of these differences in stem/

progenitor and differentiated cell hierarchy between tumor and normal cells, we adapted two 

strategies for characterizing primary cells. The first series included comparison of gene 

expression between randomly selected epithelial cells of tumor with normal, irrespective of 

their differentiation state. Epithelial cells were sorted using EpCAM and Jam-A/CD321 

antibodies to avoid contamination from any non-epithelial cells (Figure 2A). The second 

comparison included a phenotypically defined population in which gated ALDEFLUOR+ 

stem/progenitor cells (28) were fractionated based on the expression of CD49f and EpCAM 

into CD49f+/EpCAM+ luminal progenitor cells (Figure 2B). These cells in normal breast 

are considered to be undifferentiated luminal progenitors with overlapping luminal and basal 

cell gene expression pattern (20). Therefore, this selection procedure should enhance our 

ability to detect relevant cancer-specific gene expression differences in undifferentiated 

tumor cells. Between 27 and 93 cells per sample from isolated tumor or normal cells were 

subjected to qRT-PCR at the single cell level with stemness-associated and PAM50 gene 

primers.

Results of unselected tumor and normal epithelial cell comparison

Unsupervised hierarchical clustering of qRT-PCR results of stemness gene set showed clear 

separation of tumor from normal cells in both patient samples (Figure 3A and B). Tumor 

cells in both cases formed 2–3 minor clusters. However, tumor-enriched signaling networks 

differed between patient samples. A cluster of tumor cells in patient 1 showed enrichment of 

genes in the Wnt/βCatenin pathway (Figure 3C). Major signals responsible for cancer cell 

dedifferentiation and germ cell fate including SOX9 and SOX17 were upregulated in tumor 

cells compared to normal cells (29,30). A cluster of tumor cells in patient 2 likely have an 

activated Wnt/βCatenin pathway but it is most likely due to down regulation of APC and 

AXIN1, which are negative regulators of Wnt/β-Catenin pathway (Figure 3D) (31).

PAM50 gene set analyses enabled characterization of tumor and normal cells at multiple 

levels. First, Jam-A±EpCAM+ cells used in the analyses are epithelial because these cells 

expressed variable levels of keratin 5, keratin 17, epidermal growth factor receptor (EGFR) 

and ERBB2 (Figure 4A). Keratin 5 and 17, although expressed predominantly in basal cells, 

are expressed in luminal cells, particularly cells with luminal A breast cancer gene 

expression pattern (32). Second, most often cultured breast epithelial cells are enriched for 
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basal gene expression. Although our previous phenotypic analyses have shown that 

reprogramming assay conditions allow growth of both luminal and basal cells, this has not 

been proven at transcriptome level (14). In case of patient 1, normal cells were randomly 

distributed with one relatively large cluster with interspersed tumor cells and a minor cluster. 

The major cluster of normal cells expressed both basal and luminal cell-enriched genes, 

whereas the minor cluster expressed mostly luminal cell-enriched genes (Figure 4A). Tumor 

cells formed two well-separated clusters, one expressing predominantly luminal cell-

enriched genes and the other expressing both luminal and basal cell-enriched genes. Similar 

results in patient 2 with majority of tumor cells forming a single cluster that predominantly 

expressed luminal genes (Figure 4B). Majority of normal cells expressed both luminal and 

basal genes. Third, PAM50 gene set analyses confirmed heterogeneity in gene expression 

pattern in both tumor and normal cells of the same patient.

Tumor classification based on differential gene expression in phenotypically defined 
tumor and normal cells

To overcome difference in differentiation state between two cell types as a confounding 

factor in identification of cancer-specific gene expression changes, we performed the 

analyses in a phenotypically defined ALDH+/CD49f+/EpCAM+ subpopulation. CD49f+/

EpCAM− and/or CD44+/CD24− cells, although considered much more stem/basal like, 

were not selected for the analysis because these cells constituted a minor population in both 

normal and tumors (Figure 1B and data not shown).

With stemness-associated gene primer sets, normal and tumor cells segregated into two 

distinct groups in patient 1 (Figure 5A). This analysis distinguished tumor cells from normal 

cells much more clearly than the analysis that involved unselected epithelial cells shown in 

Figure 3A. Ingenuity pathway analyses of genes that are expressed at higher levels in tumor 

cells compared to normal cells identified two signaling networks; one involving VEGFA, 

WNT5A, SMAD3, and MMP2 and the other involving DNMT3A (Figure 5B). In patient 2, 

tumor cells formed two unique clusters; one being very similar to normal cells and other 

showing very little expression of stemness-associated genes (Figure 5C). Pathways that 

involved β-Catenin signaling and stemness-associated genes SOX9 and SOX17 were 

dominant in the major tumor clone (Figure 5D). In patient 3, tumor cells formed one major 

cluster, which differed from normal cells through differential expression of NGFR and 

SERPINA1 (Figure 5E). Tumor cells also lacked the expression of CDH2, which further 

indicates luminal nature of tumor cells. Similar analysis of tumor and normal of patient 4 is 

shown in Figure S1. Tumor cells were enriched for the expression of Wnt/β-Catenin 

pathway genes.

PAM50 gene set analyses provided additional insights. Keratin 14 and keratin 5 expression 

pattern in these phenotypically defined cells was similar to previously reported expression 

pattern in freshly prepared un-cultured CD49f+/EpCAM+ cells (16) suggesting limited 

introduction of culturing artifacts in gene expression analyses. In patient 1, while normal 

cells grouped into one cluster demonstrating basal/luminal hybrid gene expression pattern, 

tumor cells subgrouped into three clusters (Figure 6A). One major cluster is most likely 

luminal B subtype as it expressed mostly luminal genes. Two other minor clusters were 
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enriched for basal or basal/luminal hybrid gene expression pattern. Tumor samples of patient 

2 also formed two distinct clusters; one expressing mostly luminal genes, while the other 

expressing both luminal and basal genes (Figure 6B). Tumor cells in patient 3 are mostly 

homogenous expressing predominantly luminal genes and few basal genes (Figure 6C). 

However, normal cells in this case clustered into two clusters; one leaning towards luminal 

and the other being luminal/basal hybrid. Note that basal/luminal hybrid gene expression 

pattern is not unique to cultured cells and is observed in primary tumor samples (33).

Clustering analysis of combined unselected and phenotypically defined cell population

It is often difficult to distinguish tumor cells from normal cells that may be embedded in the 

tumor and such cross contamination could impact data interpretation in single cell RNA 

analysis. To address this issue, we performed unsupervised clustering of all cells from a 

patient sample. In the PAM50 analyses of cells from patient 1, the majority of tumor cells 

separated into two large clusters with very few tumor cells interspersed within two clusters 

of normal cells (Figure S2). In stemness gene set analysis, normal cells formed two distinct 

clusters with very few interspersed tumor cells, whereas tumor cells formed one large cluster 

(Figure S3). Results are similar with cells from patient 2. With PAM50 gene set, normal 

cells formed one cluster expressing both basal and luminal genes, whereas tumor cells 

formed one major cluster and one minor clusters with both clusters expressing mostly 

luminal genes compared to normal cells (Figure S4). With stemness gene set, normal cells 

formed one large cluster expressing both luminal and basal genes, whereas tumor cells 

formed two distinct clusters (Figure S5). As with patient 1, there were very few normal cells 

clustered within the tumor cell cluster suggesting minimum normal cell contamination 

within the tumor. Overall, results presented clearly show the ability of the assay presented in 

this study to document heterogeneity within primary tumor at single cell level. In addition, 

this clustering analysis further documents heterogeneity in gene expression in both normal 

and tumor cells.

Gene expression differences between tumor and normal: cell-type-origin of tumor versus 
transformation-induced

It has often been difficult to determine whether the observed gene expression pattern in a 

tumor is reflection of cancer-specific gene aberration or cell-type-origin of tumor. Towards 

this end, we organized results of qRT-PCR into violin plots, which show dynamic range of 

expression in cells and depict heterogeneity in expression. With phenotypically defined 

population of cells, tumor-specific overexpression of MMP2, CCND1, BAG1 and CTNNA1 

was clearly evident in patient 1 (Figure 7A). Analyses of data from unselected cells 

demonstrated a wide range of heterogeneity in expression patterns in both tumor and 

adjacent normal cells and the number of genes that could be considered differentially 

expressed between tumor and normal cells dropped significantly (Figure 7B). For example, 

although overall expression of NGFR appeared to be lower in tumor cells compared to 

adjacent normal cells, tumor contained two populations of cells, one with NGFR levels 

similar to adjacent normal cells and the other population expressing lower levels of NGFR. 

CDH2 expression appears to be elevated in only a fraction of tumor cells as evident from 

both phenotypically defined and unselected cell analyses. Data from patient 2 (Figure 7C 

and D) also revealed the ability of single cell analyses to identify genes that are truly 
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differentially expressed in tumors. MMP2 was only gene that showed overexpression in both 

tumors compared to normal irrespective of cell types used for comparison. We confirmed 

overexpression of MMP2 in tumors by immunohistochemistry of tumor and adjacent normal 

tissues (Figure S6). Overall, the single cell gene expression studies presented in this study 

enabled identification of major and minor subclones of tumor cells as well as genes truly 

differentially expressed in tumor compared to normal cells.

Discussion

In this study, we used single cell gene expression analyses to further refine methods that can 

be used to decipher tumor heterogeneity at individual patient level, to identify minor tumor 

clones as well as to distinguish genes truly differentially expressed in tumor from genes 

whose expression pattern in tumor suggests cellular precursor of tumor. Although several 

previously used techniques of culturing normal and tumor cells from the breast are often 

biased towards outgrowth of cells with basal cell characteristics, single cell analyses clearly 

showed that the method used in our study enabled growth of both normal and tumor cells 

with luminal gene expression pattern. Therefore, we believe that any artifacts introduced due 

to culturing are minimum and is the same for both normal and tumor cells. Also note that 

there is no contamination of other cell types because all cells selected for the analyses 

expressed keratins, ERBB2 and EGFR at variable levels. As multiple studies including the 

recently published results of Human Functional Genome Project clearly show enormous 

functional variation in human genome that impacts host-environment interaction at 

individual levels (8,9,25,34), it is critical to develop assays that compare tumor with normal 

from the same patient. Data presented here demonstrate feasibility of comparing tumor and 

normal at individual level.

Ideally, the studies reported here need to be conducted with cells from fresh tissues with 

limited in vitro manipulation. Our attempts to conduct such analyses were unsuccessful due 

to limited number of epithelial cells from fresh tissues. Such studies are feasible only when 

large tumors are available and larger tumors often tend to have significant number of 

necrotic areas. Adjacent normal tissue also tends to have higher levels of fibroblasts and 

adipocytes and yield very few epithelial cells. Therefore, our analyses required enrichment 

of epithelial cells through short-term cultures. Since data were obtained from cultured cells, 

the effect of tumor microenvironment on tumor cell gene expression was not taken into 

consideration. Nonetheless, cell-intrinsic gene expression differences alone were sufficient 

to distinguish tumor from adjacent normal.

Precision therapeutics programs at multiple institutions rely mostly on testing gene 

aberrations at DNA levels to identify cancer-specific signaling networks (35). These assays 

are reliable in characterizing tumors compared to assays that utilize mRNA-based tumor 

characterization although recent studies have revealed limitations even with mutation-based 

assays because selected tumor tissue for DNA analysis may not be representative of entire 

tumor (36). mRNA-based cancer classification suffers from several limitations including 

lack of appropriate normal controls, inter-individual heterogeneity in normal cell gene 

expression, differences in differentiation state between normal and tumors affecting gene 

expression, and the effect of stroma on gene expression in tumor cells. Greater than 2000 
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genes are differentially expressed between luminal/progenitor and mature cells of the breast 

and we have previously demonstrated inter-individual variability in differentiation state of 

normal breast epithelial cells (14,19). Comparative analyses of phenotypically defined cells 

versus unselected cells described in this study clearly showed the need to refine cancer-

specific pathway discovery by excluding confounding factors such as differences in 

differentiation state between normal and tumor cells and to use normal tissue from the same 

individual for comparison. Stemness-related signaling networks that appear to be active in 

tumor cells differed based on types of cells used for comparison. Lack of consideration to 

these aspects may be responsible for limited reproducibility of mRNA-based gene 

expression signatures and even randomly selected gene sets demonstrating prognostic values 

in breast cancer (37).

It has been technically challenging to differentiate genes that are truly differentially 

expressed in tumor compared to normal from genes whose expression pattern in tumor 

suggests cellular precursors of tumor. This knowledge is critical if the focus is to develop 

therapies based on differentially expressed genes. Data presented in Figure 7 clearly indicate 

the power of the analyses presented to identify truly differentially expressed genes in 

tumors. Number of genes differentially expressed in tumor compared to normal is much 

higher in patient 1 compared to patient 2. Further studies with additional samples are needed 

to link results of this type of studies with clinical parameters.

We were able to detect minor clones of tumor cells using the assay system. Although 

bioinformatics approaches have allowed dissection of genome and RNA sequencing data to 

build tumor evolutionary maps and detect minor tumor clones, functional evaluation of these 

minor clones for tumor recurrence or therapy resistance has not been possible. With 

cryopreserved tumor and normal cells from the same patients, the assay presented here 

provides an opportunity to test various drugs for their tumor cell-specific affects and residual 

cells after treatment can then be subjected to single cell genomic studies to identify cancer 

cell types that are de novo resistant to treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Mr. Luke Stewart of Fluidigm for the analyses of samples from patient 4. We also thank IU Simon Cancer 
Center Flow cytometry, Immunohistochemistry and Tissue Procurement Cores for their help.

Financial Support: Susan G. Komen for the Cure SAC110025 and Indiana Clinical Translational Sciences core 
pilot grant to H. Nakshatri. Walther Cancer Foundation provided support for the Bioinformatics core.

References

1. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of 
tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004; 351(27):2817–26. [PubMed: 
15591335] 

2. Prat A, Bianchini G, Thomas M, Belousov A, Cheang MC, Koehler A, et al. Research-based 
PAM50 subtype predictor identifies higher responses and improved survival outcomes in HER2-

Anjanappa et al. Page 9

Cancer Res. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



positive breast cancer in the NOAH study. Clin Cancer Res. 2014; 20(2):511–21. [PubMed: 
24443618] 

3. van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling 
predicts clinical outcome of breast cancer. Nature. 2002; 415(6871):530–6. [PubMed: 11823860] 

4. Drukker CA, Elias SG, Nijenhuis MV, Wesseling J, Bartelink H, Elkhuizen P, et al. Gene expression 
profiling to predict the risk of locoregional recurrence in breast cancer: a pooled analysis. Breast 
Cancer Res Treat. 2014; 148(3):599–613. [PubMed: 25414025] 

5. Cardoso F, van’t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, et al. 70-Gene Signature as an 
Aid to Treatment Decisions in Early-Stage Breast Cancer. N Engl J Med. 2016; 375(8):717–29. 
[PubMed: 27557300] 

6. Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, Vickery T, et al. A comparison of PAM50 
intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated 
estrogen receptor-positive breast cancer. Clin Cancer Res. 2010; 16(21):5222–32. [PubMed: 
20837693] 

7. Martin M, Brase JC, Ruiz A, Prat A, Kronenwett R, Calvo L, et al. Prognostic ability of EndoPredict 
compared to research-based versions of the PAM50 risk of recurrence (ROR) scores in node-
positive, estrogen receptor-positive, and HER2-negative breast cancer. A GEICAM/9906 sub-study. 
Breast Cancer Res Treat. 2016; 156(1):81–9. [PubMed: 26909792] 

8. Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M. The relationship between DNA 
methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. 
Genome Biol. 2014; 15(2):R37. [PubMed: 24555846] 

9. Lappalainen T, Sammeth M, Friedlander MR, t Hoen PA, Monlong J, Rivas MA, et al. 
Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013; 
501(7468):506–11. [PubMed: 24037378] 

10. Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B, et al. ROCK inhibitor and feeder 
cells induce the conditional reprogramming of epithelial cells. Am J Pathol. 2012; 180(2):599–
607. [PubMed: 22189618] 

11. Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev 
Genet. 2016; 17(3):175–88. [PubMed: 26806412] 

12. Garbe JC, Bhattacharya S, Merchant B, Bassett E, Swisshelm K, Feiler HS, et al. Molecular 
distinctions between stasis and telomere attrition senescence barriers shown by long-term culture 
of normal human mammary epithelial cells. Cancer Res. 2009; 69(19):7557–68. [PubMed: 
19773443] 

13. Ince TA, Richardson AL, Bell GW, Saitoh M, Godar S, Karnoub AE, et al. Transformation of 
different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell. 2007; 
12(2):160–70. [PubMed: 17692807] 

14. Nakshatri H, Anjanappa M, Bhat-Nakshatri P. Ethnicity-Dependent and -Independent 
Heterogeneity in Healthy Normal Breast Hierarchy Impacts Tumor Characterization. Scientific 
reports. 2015; 5:13526. [PubMed: 26311223] 

15. Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M, et al. Genetic predisposition directs 
breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell. 2011; 8(2):149–63. 
[PubMed: 21295272] 

16. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, et al. Aberrant luminal progenitors as the 
candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 
2009; 15(8):907–13. [PubMed: 19648928] 

17. Pfefferle AD, Spike BT, Wahl GM, Perou CM. Luminal progenitor and fetal mammary stem cell 
expression features predict breast tumor response to neoadjuvant chemotherapy. Breast Cancer Res 
Treat. 2015; 149(2):425–37. [PubMed: 25575446] 

18. Keller PJ, Arendt LM, Skibinski A, Logvinenko T, Klebba I, Dong S, et al. Defining the cellular 
precursors to human breast cancer. Proc Natl Acad Sci U S A. 2012; 109(8):2772–7. [PubMed: 
21940501] 

19. Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, et al. Transcriptome analysis of the 
normal human mammary cell commitment and differentiation process. Cell Stem Cell. 2008; 3(1):
109–18. [PubMed: 18593563] 

Anjanappa et al. Page 10

Cancer Res. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20. Shehata M, Teschendorff A, Sharp G, Novcic N, Russell IA, Avril S, et al. Phenotypic and 
functional characterisation of the luminal cell hierarchy of the mammary gland. Breast Cancer 
Res. 2012; 14(5):R134. [PubMed: 23088371] 

21. Perkins SM, Bales C, Vladislav T, Althouse S, Miller KD, Sandusky G, et al. TFAP2C expression 
in breast cancer: correlation with overall survival beyond 10 years of initial diagnosis. Breast 
Cancer Res Treat. 2015; 152(3):519–31. [PubMed: 26160249] 

22. Navin NE. Delineating cancer evolution with single-cell sequencing. Science translational 
medicine. 2015; 7(296):296fs29.

23. Guo G, Luc S, Marco E, Lin TW, Peng C, Kerenyi MA, et al. Mapping cellular hierarchy by 
single-cell analysis of the cell surface repertoire. Cell Stem Cell. 2013; 13(4):492–505. [PubMed: 
24035353] 

24. Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, et al. Dynamics of genomic clones in breast 
cancer patient xenografts at single-cell resolution. Nature. 2014

25. Li Y, Oosting M, Smeekens SP, Jaeger M, Aguirre-Gamboa R, Le KT, et al. A Functional 
Genomics Approach to Understand Variation in Cytokine Production in Humans. Cell. 2016; 
167(4):1099–110e14. [PubMed: 27814507] 

26. Lim E, Wu D, Pal B, Bouras T, Asselin-Labat ML, Vaillant F, et al. Transcriptome analyses of 
mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. 
Breast Cancer Res. 2010; 12(2):R21. [PubMed: 20346151] 

27. Visvader JE, Stingl J. Mammary stem cells and the differentiation hierarchy: current status and 
perspectives. Genes Dev. 2014; 28(11):1143–58. [PubMed: 24888586] 

28. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 Is a 
Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical 
Outcome. Cell Stem Cell. 2007; 1(5):555–67. [PubMed: 18371393] 

29. Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, et al. SOX17 is a critical 
specifier of human primordial germ cell fate. Cell. 2015; 160(1–2):253–68. [PubMed: 25543152] 

30. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, et al. Slug and Sox9 
cooperatively determine the mammary stem cell state. Cell. 2012; 148(5):1015–28. [PubMed: 
22385965] 

31. Boras-Granic K, Wysolmerski JJ. Wnt signaling in breast organogenesis. Organogenesis. 2008; 
4(2):116–22. [PubMed: 19279723] 

32. Bastien RR, Rodriguez-Lescure A, Ebbert MT, Prat A, Munarriz B, Rowe L, et al. PAM50 breast 
cancer subtyping by RT-qPCR and concordance with standard clinical molecular markers. BMC 
medical genomics. 2012; 5:44. [PubMed: 23035882] 

33. Grosse-Wilde A, Fouquier d’Herouel A, McIntosh E, Ertaylan G, Skupin A, Kuestner RE, et al. 
Stemness of the hybrid Epithelial/Mesenchymal State in Breast Cancer and Its Association with 
Poor Survival. PloS one. 2015; 10(5):e0126522. [PubMed: 26020648] 

34. Ter Horst R, Jaeger M, Smeekens SP, Oosting M, Swertz MA, Li Y, et al. Host and Environmental 
Factors Influencing Individual Human Cytokine Responses. Cell. 2016; 167(4):1111–24e13. 
[PubMed: 27814508] 

35. Wheler JJ, Atkins JT, Janku F, Moulder SL, Yelensky R, Stephens PJ, et al. Multiple gene 
aberrations and breast cancer: lessons from super-responders. BMC cancer. 2015; 15:442. 
[PubMed: 26021831] 

36. Miller CA, Gindin Y, Lu C, Griffith OL, Griffith M, Shen D, et al. Aromatase inhibition remodels 
the clonal architecture of estrogen-receptor-positive breast cancers. Nature communications. 2016; 
7:12498.

37. Venet D, Dumont JE, Detours V. Most random gene expression signatures are significantly 
associated with breast cancer outcome. PLoS Comput Biol. 2011; 7(10):e1002240. [PubMed: 
22028643] 

Anjanappa et al. Page 11

Cancer Res. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Single cell analyses scheme and samples analyzed. A) Schematic view of experimental 

design. B) Tumor and adjacent normal cells are in different differentiation state. Flow 

cytometry with CD49f and EpCAM stained cells shows different levels of CD49f+/EpCAM

+ luminal progenitor and CD49f-/EpCAM+ differentiated cells in tumor and adjacent 

normal cells of three samples analyzed. Unstained or weakly CD49f stained cells correspond 

to feeder fibroblasts.
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Figure 2. 
Flow cytometry sorting of cells for single cell analyses. A) Jam-A/EpCAM staining to 

separate breast epithelial cells from feeder layer fibroblasts. Fibroblasts do not stain for Jam-

A/EpCAM. Jam-A/EpCAM positive cells were sorted and used for unselected cell analyses. 

B) Sorting of ALDH+/CD49f+/EpCAM+ cells to enrich for phenotypically defined cell 

population. CD49f+/EpCAM+ cells in the boxed regions on right were selected for analyses.
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Figure 3. 
Genes linked to stemness differentiate tumor cells from normal cells. A) Heatmap depicting 

expression pattern of stemness-associated genes in unselected cells of tumor and adjacent 

normal of patient 1. A vertical bar on right side denotes genes overexpressed in tumor cells 

compared to normal cells. Red and green bars at the bottom indicate normal and tumor cells, 

respectively. B) Heatmap depicting expression pattern of stemness-associated genes in 

unselected cells of tumor and adjacent normal of patient 2. A vertical bar on the right side 

denotes genes that are expressed at a lower level in tumor cells compared to normal. C) 

Stemness cell signaling network uniquely active in tumor cells of patient 1. Network was 

generated using genes indicated by a vertical bar in A. Genes with shaded boxes in the 

network are differentially expressed in tumor cells compared to normal cells. D) Signaling 

network in tumor cells in patient 2. Negative regulators of Wnt signaling pathway such as 

AXIN1 and APC were expressed at lower levels in tumor cells compared to normal cells.
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Figure 4. 
PAM50 gene set analyses identify cells with luminal-enriched, basal-enriched or hybrid gene 

expression patterns. A) Heatmap depicting expression pattern of PAM50 genes in unselected 

cells of tumor and adjacent normal of patient 1. Red and green bars at the bottom indicate 

normal and tumor cells, respectively. Unlike with stemness-associated gene set analyses, 

tumor and normal did not separate clearly into two groups. B) Heatmap depicting expression 

pattern of PAM50 genes in tumor and normal cells of patient 2.
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Figure 5. 
Distinct clustering of ALDH+/CD49f+/EpCAM+ undifferentiated normal and tumor luminal 

progenitor cells. A) Heatmap depicting expression pattern of stemness-associated genes in 

phenotypically defined cells of tumor and adjacent normal of patient 1. B) Genes 

differentially expressed in tumor cells compared to normal cells were part of two signaling 

networks. C) Heatmap depicting expression patterns of stemness-associated genes in normal 

and tumor cells of patient 2. Tumors clustered into two distinct groups. D) Signaling 
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network involving β-Catenin-SOX9-SOX17 was active in the major tumor clone. E). 

Heatmap depicting stemness-associated gene expression in patient 3.
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Figure 6. 
PAM50 gene set analyses of phenotypically defined cells identify multiple tumor clones. A) 

Tumor cells in patient 1 clustered into three distinct groups, each expressing different levels 

of luminal and basal genes. B) Expression pattern of PAM50 genes in patient 2. Tumor cells 

formed two clusters. C) Tumor cells in patient 3 are relatively homogenous with tumor cells 

clustering into one group expressing mostly luminal genes.
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Figure 7. 
Identifying genes truly differentially expressed in tumors compared to normal. Violin plots 

show genes truly overexpressed or underexpressed in all tumor cells compared to all normal 

cells. Width of the violin depicts expression frequency at that level. A) Data from 

phenotypically defined cells of patient 1. B) Data from unselected cells of patient 1. C) Data 

from phenotypically defined cells of patient 2. D) Data from unselected cells of patient 2.
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