307 research outputs found
Recommended from our members
Spoken word recognition in adolescents with autism spectrum disorders and specific language impairment
Spoken word recognition, during gating, appears intact in specific language impairment (SLI). This study used gating to investigate the process in adolescents with autism spectrum disorders plus language impairment (ALI). Adolescents with ALI, SLI, and typical language development (TLD), matched on nonverbal IQ listened to gated words that varied in frequency (low/high) and number of phonological onset neighbors (low/high density). Adolescents with ALI required more speech input to initially identify low-frequency words with low competitor density than those with SLI and those with TLD, who did not differ. These differences may be due to less well specified word form representations in ALI
Interferon-stimulated gene (ISG)-expression screening reveals the specific antibunyaviral activity of ISG20
Bunyaviruses pose a significant threat to human health, prosperity and food security. In response to viral infections, interferons (IFNs) upregulate the expression of hundreds of interferon stimulated genes (ISGs) whose cumulative action can potently inhibit the replication of bunyaviruses. We used a flow cytometry-based method to screen the ability of ∼500 unique ISGs from humans and rhesus macaques to inhibit the replication of Bunyamwera orthobunyavirus (BUNV), the prototype of both the Peribunyaviridae family and Bunyavirales order. Candidates possessing antibunyaviral activity were further examined using a panel of divergent bunyaviruses. Interestingly, one candidate, ISG20, exhibited potent antibunyaviral activity against most viruses examined from the Peribunyaviridae, Hantaviridae and Nairoviridae families, whereas phleboviruses (Phenuiviridae) largely escaped inhibition. Similar to other viruses known to be targeted by ISG20, the antibunyaviral activity of ISG20 is dependent upon its functional ribonuclease activity. Through use of an infectious VLP assay (based on the BUNV minigenome system), we confirmed that gene expression from all 3 viral segments is strongly inhibited by ISG20. Using in vitro evolution, we generated a substantially ISG20-resistant BUNV and mapped the determinants of ISG20 sensitivity/resistance. Taken together, we report that ISG20 is a broad and potent antibunyaviral factor yet some bunyaviruses are remarkably ISG20 resistant. Thus, ISG20 sensitivity/resistance could influence the pathogenesis of bunyaviruses, many of which are emerging viruses of clinical or veterinary significance
ADAR1 Facilitates HIV-1 Replication in Primary CD4+ T Cells.
Unlike resting CD4+ T cells, activated CD4+T cells are highly susceptible to infection of human immunodeficiency virus 1 (HIV-1). HIV-1 infects T cells and macrophages without activating the nucleic acid sensors and the anti-viral type I interferon response. Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA editing enzyme that displays antiviral activity against several RNA viruses. Mutations in ADAR1 cause the autoimmune disorder Aicardi-Goutieères syndrome (AGS). This disease is characterized by an inappropriate activation of the interferon-stimulated gene response. Here we show that HIV-1 replication, in ADAR1-deficient CD4+T lymphocytes from AGS patients, is blocked at the level of protein translation. Furthermore, viral protein synthesis block is accompanied by an activation of interferon-stimulated genes. RNA silencing of ADAR1 in Jurkat cells also inhibited HIV-1 protein synthesis. Our data support that HIV-1 requires ADAR1 for efficient replication in human CD4+T cells
JAK Inhibition in the Aicardi-Goutières Syndrome
International audienc
A systematic review of experimental methods to manipulate secondary hyperalgesia in humans: protocol
Abstract
Background
Neuropathic pain affects 7–10% of people, but responds poorly to pharmacotherapy, indicating a need for better treatments. Mechanistic research on neuropathic pain frequently uses human surrogate models of the secondary hyperalgesia that is a common feature of neuropathic pain. Experimentally induced secondary hyperalgesia has been manipulated with pharmacological and non-pharmacological methods to clarify the relative contributions of different mechanisms to secondary hyperalgesia. However, this literature has not been systematically synthesised. The aim of this systematic review is to identify, describe, and compare methods that have been used to manipulate experimentally induced secondary hyperalgesia in healthy humans.
Methods
A systematic search strategy will be supplemented by reference list checks and direct contact with identified laboratories to maximise the identification of data reporting the experimental manipulation of experimentally induced secondary hyperalgesia in healthy humans. Duplicated screening, risk of bias assessment, and data extraction procedures will be used. Authors will be asked to provide data as necessary. Data will be pooled and meta-analyses conducted where possible, with subgrouping according to manipulation method. Manipulation methods will be ranked for potency and risk.
Discussion
The results of this review will provide a useful reference for researchers interested in using experimental methods to manipulate secondary hyperalgesia in humans and will help to clarify the relative contributions of different mechanisms to secondary hyperalgesia.
Systematic review registration
This protocol will be registered on PROSPERO before the review begins. Review records will be updated on PROSPERO once the review is complete. This review is intended for publication in a peer-reviewed journal. Analyses and scripts will be made publicly available
A pilot study for a non-invasive system for detection of malignancy in canine subcutaneous and cutaneous masses using machine learning
IntroductionEarly diagnosis of cancer enhances treatment planning and improves prognosis. Many masses presenting to veterinary clinics are difficult to diagnose without using invasive, time-consuming, and costly tests. Our objective was to perform a preliminary proof-of-concept for the HT Vista device, a novel artificial intelligence-based thermal imaging system, developed and designed to differentiate benign from malignant, cutaneous and subcutaneous masses in dogs.MethodsForty-five dogs with a total of 69 masses were recruited. Each mass was clipped and heated by the HT Vista device. The heat emitted by the mass and its adjacent healthy tissue was automatically recorded using a built-in thermal camera. The thermal data from both areas were subsequently analyzed using an Artificial Intelligence algorithm. Cytology and/or biopsy results were later compared to the results obtained from the HT Vista system and used to train the algorithm. Validation was done using a “Leave One Out” cross-validation to determine the algorithm's performance.ResultsThe accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the system were 90%, 93%, 88%, 83%, and 95%, respectively for all masses.ConclusionWe propose that this novel system, with further development, could be used to provide a decision-support tool enabling clinicians to differentiate between benign lesions and those requiring additional diagnostics. Our study also provides a proof-of-concept for ongoing prospective trials for cancer diagnosis using advanced thermodynamics and machine learning procedures in companion dogs
A Specific IFIH1 Gain-of-Function Mutation Causes Singleton-Merten Syndrome
Singleton-Merten syndrome (SMS) is an infrequently described autosomal-dominant disorder characterized by early and extreme aortic and valvular calcification, dental anomalies (early-onset periodontitis and root resorption), osteopenia, and acro-osteolysis. To determine the molecular etiology of this disease, we performed whole-exome sequencing and targeted Sanger sequencing. We identified a common missense mutation, c.2465G>A (p.Arg822Gln), in interferon induced with helicase C domain 1 (IFIH1, encoding melanoma differentiation-associated protein 5 [MDA5]) in four SMS subjects from two families and a simplex case. IFIH1 has been linked to a number of autoimmune disorders, including Aicardi-Goutières syndrome. Immunohistochemistry demonstrated the localization of MDA5 in all affected target tissues. In vitro functional analysis revealed that the IFIH1 c.2465G>A mutation enhanced MDA5 function in interferon beta induction. Interferon signature genes were upregulated in SMS individuals’ blood and dental cells. Our data identify a gain-of-function IFIH1 mutation as causing SMS and leading to early arterial calcification and dental inflammation and resorption
Training and validation of a novel non-invasive imaging system for ruling out malignancy in canine subcutaneous and cutaneous masses using machine learning in 664 masses
ObjectiveTo train and validate the use of a novel artificial intelligence-based thermal imaging system as a screening tool to rule out malignancy in cutaneous and subcutaneous masses in dogs.AnimalsTraining study: 147 client-owned dogs with 233 masses. Validation Study: 299 client-owned dogs with 525 masses. Cytology was non-diagnostic in 94 masses, resulting in 431 masses from 248 dogs with diagnostic samples.ProceduresThe prospective studies were conducted between June 2020 and July 2022. During the scan, each mass and its adjacent healthy tissue was heated by a high-power Light-Emitting Diode. The tissue temperature was recorded by the device and consequently analyzed using a supervised machine learning algorithm to determine whether the mass required further investigation. The first study was performed to collect data to train the algorithm. The second study validated the algorithm, as the real-time device predictions were compared to the cytology and/or biopsy results.ResultsThe results for the validation study were that the device correctly classified 45 out of 53 malignant masses and 253 out of 378 benign masses (sensitivity = 85% and specificity = 67%). The negative predictive value of the system (i.e., percent of benign masses identified as benign) was 97%.Clinical relevanceThe results demonstrate that this novel system could be used as a decision-support tool at the point of care, enabling clinicians to differentiate between benign lesions and those requiring further diagnostics
Type I interferonopathy due to a homozygous loss-of-inhibitory-function mutation in STAT2
International audiencePurpose STAT2 is both an effector and negative regulator of type I interferon (IFN-I) signalling. We describe the characterization of a novel homozygous missense STAT2 substitution in a patient with a type I interferonopathy. Methods Whole-genome sequencing (WGS) was used to identify the genetic basis of disease in a patient with features of enhanced IFN-I signalling. After stable lentiviral reconstitution of STAT2-null human fibrosarcoma U6A cells with STAT2 wild type or p.(A219V), we performed quantitative polymerase chain reaction, western blotting, immunofluorescence, and co-immunoprecipitation to functionally characterize the p.(A219V) variant. Results WGS identified a rare homozygous single nucleotide transition in STAT2 (c.656C > T), resulting in a p.(A219V) substitution, in a patient displaying developmental delay, intracranial calcification, and up-regulation of interferon-stimulated gene (ISG) expression in blood. In vitro studies revealed that the STAT2 p.(A219V) variant retained the ability to transduce an IFN-I stimulus. Notably, STAT2 p.(A219V) failed to support receptor desensitization, resulting in sustained STAT2 phosphorylation and ISG up-regulation. Mechanistically, STAT2 p.(A219V) showed defective binding to ubiquitin specific protease 18 (USP18), providing a possible explanation for the chronic IFN-I pathway activation seen in the patient. Conclusion Our data indicate an impaired negative regulatory role of STAT2 p.(A219V) in IFN-I signalling and that mutations in STAT2 resulting in a type I interferonopathy state are not limited to the previously reported R148 residue. Indeed, structural modelling highlights at least 3 further residues critical to mediating a STAT2-USP18 interaction, in which mutations might be expected to result in defective negative feedback regulation of IFN-I signalling
- …