16,106 research outputs found

    The luminosity function of the brightest galaxies in the IRAS survey

    Get PDF
    Results from a study of the far infrared properties of the brightest galaxies in the IRAS survey are described. There is a correlation between the infrared luminosity and the infrared to optical luminosity ratio and between the infrared luminosity and the far infrared color temperature in these galaxies. The infrared bright galaxies represent a significant component of extragalactic objects in the local universe, being comparable in space density to the Seyferts, optically identified starburst galaxies, and more numerous than quasars at the same bolometric luminosity. The far infrared luminosity in the local universe is approximately 25% of the starlight output in the same volume

    Multidimensional spectroscopy with a single broadband phase-shaped laser pulse

    Full text link
    We calculate the frequency-dispersed nonlinear transmission signal of a phase-shaped visible pulse to fourth order in the field. Two phase profiles, a phase-step and phase-pulse, are considered. Two dimensional signals obtained by varying the detected frequency and phase parameters are presented for a three electronic band model system. We demonstrate how two-photon and stimulated Raman resonances can be manipulated by the phase profile and sign, and selected quantum pathways can be suppressed.Comment: 26 pages, 15 figure

    Local Section Meetings

    Get PDF
    n/

    Unitary transformations for testing Bell inequalities

    Full text link
    It is shown that optical experimental tests of Bell inequality violations can be described by SU(1,1) transformations of the vacuum state, followed by photon coincidence detections. The set of all possible tests are described by various SU(1,1) subgroups of Sp(8,R\Bbb R). In addition to establishing a common formalism for physically distinct Bell inequality tests, the similarities and differences of post--selected tests of Bell inequality violations are also made clear. A consequence of this analysis is that Bell inequality tests are performed on a very general version of SU(1,1) coherent states, and the theoretical violation of the Bell inequality by coincidence detection is calculated and discussed. This group theoretical approach to Bell states is relevant to Bell state measurements, which are performed, for example, in quantum teleportation.Comment: 3 figure

    Low-cycle fatigue of Type 347 stainless steel and Hastelloy alloy X in hydrogen gas and in air at elevated temperatures

    Get PDF
    An investigation was conducted to assess the low-cycle fatigue resistance of two alloys, Type 347 stainless steel and Hastelloy Alloy X, that were under consideration for use in nuclear-powered rocket vehicles. Constant-amplitude, strain-controlled fatigue tests were conducted under compressive strain cycling at a constant strain rate of 0.001/sec and at total axial strain ranges of 1.5, 3.0, and 5.0 %, in both laboratory-air and low-pressure hydrogen-gas environments at temperatures from 538 to 871 C. Specimens were obtained from three heats of Type 347 stainless steel bar and two heats of Hastelloy Alloy X. The tensile properties of each heat were determined at 21, 538, 649, and 760 C. The continuous cycling fatigue resistance was determined for each heat at temperatures of 538, 760, and 871 C. The Type 347 stainless steel exhibited equal or superior fatigue resistance to the Hastelloy Alloy X at all conditions of this study

    Low Noise 1 THz–1.4 THz Mixers Using Nb/Al-AlN/NbTiN SIS Junctions

    Get PDF
    We present the development of a low noise 1.2 THz and 1.4 THz SIS mixers for heterodyne spectrometry on the Stratospheric Observatory For Infrared Astronomy (SOFIA) and Herschel Space Observatory. This frequency range is above the limit for the commonly used Nb quasi particle SIS junctions, and a special type of hybrid Nb/AlN/NbTiN junctions has been developed for this project.We are using a quasi-optical mixer design with two Nb/AlN/NbTiN junctions with an area of 0.25 µm^2. The SIS junction tuning circuit is made of Nb and gold wire layers. At 1.13 THz the minimum SIS receiver uncorrected noise temperature is 450 K. The SIS receiver noise corrected for the loss in the LO coupler and in the cryostat optics is 350–450 K across 1.1–1.25 THz band. The receiver has a uniform sensitivity in a full 4–8 GHz IF band. The 1.4 THz SIS receiver test at 1.33–1.35 THz gives promising results, although limited by the level of available LO power. Extrapolation of the data obtained with low LO power level shows a possibility to reach 500 K DSB receiver noise using already existing SIS mixer

    Molecular heat pump for rotational states

    Get PDF
    In this work we investigate the theory for three different uni-directional population transfer schemes in trapped multilevel systems which can be utilized to cool molecular ions. The approach we use exploits the laser-induced coupling between the internal and motional degrees of freedom so that the internal state of a molecule can be mapped onto the motion of that molecule in an external trapping potential. By sympathetically cooling the translational motion back into its ground state the mapping process can be employed as part of a cooling scheme for molecular rotational levels. This step is achieved through a common mode involving a laser-cooled atom trapped alongside the molecule. For the coherent mapping we will focus on adiabatic passage techniques which may be expected to provide robust and efficient population transfers. By applying far-detuned chirped adiabatic rapid passage pulses we are able to achieve an efficiency of better than 98% for realistic parameters and including spontaneous emission. Even though our main focus is on cooling molecular states, the analysis of the different adiabatic methods has general features which can be applied to atomic systems

    Random wave functions and percolation

    Full text link
    Recently it was conjectured that nodal domains of random wave functions are adequately described by critical percolation theory. In this paper we strengthen this conjecture in two respects. First, we show that, though wave function correlations decay slowly, a careful use of Harris' criterion confirms that these correlations are unessential and nodal domains of random wave functions belong to the same universality class as non critical percolation. Second, we argue that level domains of random wave functions are described by the non-critical percolation model.Comment: 13 page

    Statistics of Multiple Sign Changes in a Discrete Non-Markovian Sequence

    Full text link
    We study analytically the statistics of multiple sign changes in a discrete non-Markovian sequence ,\psi_i=\phi_i+\phi_{i-1} (i=1,2....,n) where \phi_i's are independent and identically distributed random variables each drawn from a symmetric and continuous distribution \rho(\phi). We show that the probability P_m(n) of m sign changes upto n steps is universal, i.e., independent of the distribution \rho(\phi). The mean and variance of the number of sign changes are computed exactly for all n>0. We show that the generating function {\tilde P}(p,n)=\sum_{m=0}^{\infty}P_m(n)p^m\sim \exp[-\theta_d(p)n] for large n where the `discrete' partial survival exponent \theta_d(p) is given by a nontrivial formula, \theta_d(p)=\log[{{\sin}^{-1}(\sqrt{1-p^2})}/{\sqrt{1-p^2}}] for 0\le p\le 1. We also show that in the natural scaling limit when m is large, n is large but but keeping x=m/n fixed, P_m(n)\sim \exp[-n \Phi(x)] where the large deviation function \Phi(x) is computed. The implications of these results for Ising spin glasses are discussed.Comment: 4 pages revtex, 1 eps figur
    • …
    corecore