15,452 research outputs found
Vortices in self-gravitating disks
Vortices are believed to greatly help the formation of km sized planetesimals
by collecting dust particles in their centers. However, vortex dynamics is
commonly studied in non-self-gravitating disks. The main goal here is to
examine the effects of disk self-gravity on the vortex dynamics via numerical
simulations. In the self-gravitating case, when quasi-steady gravitoturbulent
state is reached, vortices appear as transient structures undergoing recurring
phases of formation, growth to sizes comparable to a local Jeans scale, and
eventual shearing and destruction due to gravitational instability. Each phase
lasts over 2-3 orbital periods. Vortices and density waves appear to be coupled
implying that, in general, one should consider both vortex and density wave
modes for a proper understanding of self-gravitating disk dynamics. Our results
imply that given such an irregular and rapidly changing, transient character of
vortex evolution in self-gravitating disks it may be difficult for such
vortices to effectively trap dust particles in their centers that is a
necessary process towards planet formation.Comment: to appear in the proceedings of Cool Stars, Stellar Systems and The
Sun, 15th Cambridge Workshop, St. Andrews, Scotland, July 21-25, 200
The role of the energy equation in the fragmentation of protostellar discs during stellar encounters
In this paper, we use high-resolution smoothed particle hydrodynamics (SPH)
simulations to investigate the response of a marginally stable self-gravitating
protostellar disc to a close parabolic encounter with a companion discless
star. Our main aim is to test whether close brown dwarfs or massive planets can
form out of the fragmentation of such discs. We follow the thermal evolution of
the disc by including the effects of heating due to compression and shocks and
a simple prescription for cooling and find results that contrast with previous
isothermal simulations. In the present case we find that fragmentation is
inhibited by the interaction, due to the strong effect of tidal heating, which
results in a strong stabilization of the disc. A similar behaviour was also
previously observed in other simulations involving discs in binary systems. As
in the case of isolated discs, it appears that the condition for fragmentation
ultimately depends on the cooling rate.Comment: 9 pages, 10 figures, accepted in MNRA
The Magnetic Topology of the Weak-Lined T Tauri Star V410 - A Simultaneous Temperature and Magnetic Field Inversion
We present a detailed temperature and magnetic investigation of the T Tauri
star V410 Tau by means of a simultaneous Doppler- and Zeeman-Doppler Imaging.
Moreover we introduce a new line profile reconstruction method based on a
singular value decomposition (SVD) to extract the weak polarized line profiles.
One of the key features of the line profile reconstruction is that the SVD line
profiles are amenable to radiative transfer modeling within our Zeeman-Doppler
Imaging code iMap. The code also utilizes a new iterative regularization scheme
which is independent of any additional surface constraints. To provide more
stability a vital part of our inversion strategy is the inversion of both
Stokes I and Stokes V profiles to simultaneously reconstruct the temperature
and magnetic field surface distribution of V410 Tau. A new image-shear analysis
is also implemented to allow the search for image and line profile distortions
induced by a differential rotation of the star. The magnetic field structure we
obtain for V410 Tau shows a good spatial correlation with the surface
temperature and is dominated by a strong field within the cool polar spot. The
Zeeman-Doppler maps exhibit a large-scale organization of both polarities
around the polar cap in the form of a twisted bipolar structure. The magnetic
field reaches a value of almost 2 kG within the polar region but smaller fields
are also present down to lower latitudes. The pronounced non-axisymmetric field
structure and the non-detection of a differential rotation for V410 Tau
supports the idea of an underlying -type dynamo, which is predicted
for weak-lined T Tauri stars.Comment: Accepted for A&A, 18 pages, 10 figure
Planetesimal Formation In Self-Gravitating Discs
We study particle dynamics in local two-dimensional simulations of
self-gravitating accretion discs with a simple cooling law. It is well known
that the structure which arises in the gaseous component of the disc due to a
gravitational instability can have a significant effect on the evolution of
dust particles. Previous results using global simulations indicate that spiral
density waves are highly efficient at collecting dust particles, creating
significant local over-densities which may be able to undergo gravitational
collapse. We expand on these findings, using a range of cooling times to mimic
the conditions at a large range of radii within the disc. Here we use the
Pencil Code to solve the 2D local shearing sheet equations for gas on a fixed
grid together with the equations of motion for solids coupled to the gas solely
through aerodynamic drag force. We find that spiral density waves can create
significant enhancements in the surface density of solids, equivalent to 1-10cm
sized particles in a disc following the profiles of Clarke (2009) around a
solar mass star, causing it to reach concentrations several orders of magnitude
larger than the particles mean surface density. We also study the velocity
dispersion of the particles, finding that the spiral structure can result in
the particle velocities becoming highly ordered, having a narrow velocity
dispersion. This implies low relative velocities between particles, which in
turn suggests that collisions are typically low energy, lessening the
likelihood of grain destruction. Both these findings suggest that the density
waves that arise due to gravitational instabilities in the early stages of star
formation provide excellent sites for the formation of large,
planetesimal-sized objects.Comment: 11 pages, 8 figures, accepted for publication in MNRA
Determination of differential elastic and vibrational excitation cross sections for e-H sub 2 scattering
Elastic scattering of electrons by hydroge
The influence of chiral surface states on the London penetration depth in SrRuO
The London penetration depth for the unconventional superconductor
SrRuO is analyzed assuming an order parameter which breaks time
reversal symmetry and parity simultaneously. Such a superconducting state
possesses chiral quasiparticle states with subgap energies at the surface. We
show that these subgap states can give a significant contribution to the
low-temperature behavior of the London penetration depth yielding a
power-law even though bulk quasiparticle spectrum is gapped. The presence of
several electron bands gives rise to interband transition among the subgap
surface states and influences the properties of the surface impedance.
Furthermore, the surface states lead also to a non-linear Meissner effect.Comment: 4 pages, 1 figure, the definition of the Nambu field operator
introduced, and some typos correcte
- …