Vortices are believed to greatly help the formation of km sized planetesimals
by collecting dust particles in their centers. However, vortex dynamics is
commonly studied in non-self-gravitating disks. The main goal here is to
examine the effects of disk self-gravity on the vortex dynamics via numerical
simulations. In the self-gravitating case, when quasi-steady gravitoturbulent
state is reached, vortices appear as transient structures undergoing recurring
phases of formation, growth to sizes comparable to a local Jeans scale, and
eventual shearing and destruction due to gravitational instability. Each phase
lasts over 2-3 orbital periods. Vortices and density waves appear to be coupled
implying that, in general, one should consider both vortex and density wave
modes for a proper understanding of self-gravitating disk dynamics. Our results
imply that given such an irregular and rapidly changing, transient character of
vortex evolution in self-gravitating disks it may be difficult for such
vortices to effectively trap dust particles in their centers that is a
necessary process towards planet formation.Comment: to appear in the proceedings of Cool Stars, Stellar Systems and The
Sun, 15th Cambridge Workshop, St. Andrews, Scotland, July 21-25, 200