2,722 research outputs found

    Multimodal Perception and Multicriterion Control of Nested Systems

    Get PDF
    The purpose of this report is to identify the essential characteristics of goal-directed whole-body motion. The report is organized into three major sections (Sections 2, 3, and 4). Section 2 reviews general themes from ecological psychology and control-systems engineering that are relevant to the perception and control of whole-body motion. These themes provide an organizational framework for analyzing the complex and interrelated phenomena that are the defining characteristics of whole-body motion. Section 3 of this report applies the organization framework from the first section to the problem of perception and control of aircraft motion. This is a familiar problem in control-systems engineering and ecological psychology. Section 4 examines an essential but generally neglected aspect of vehicular control: coordination of postural control and vehicular control. To facilitate presentation of this new idea, postural control and its coordination with vehicular control are analyzed in terms of conceptual categories that are familiar in the analysis of vehicular control

    Understanding Skill in EVA Mass Handling

    Get PDF
    Key attributes of skilled mass handling were identified through an examination of lessons learned by the extravehicular activity operational community. These qualities were translated into measurable quantities. The operational validity of the ground-based investigation was improved by building a device that increased the degrees of freedom of extravehicular mobility unit motion on the Precision Air-Bearing Floor. The results revealed subtle patterns of interaction between motions of an orbital replacement unit mockup and mass handler that should be important for effective performance on orbit. The investigation also demonstrated that such patterns can be measured with a variety of common instruments and under imperfect conditions of observation

    Overview of the Current Literature on the Most Common Neurological Diseases in Dogs with a Particular Focus on Rehabilitation

    Get PDF
    Simple Summary This paper aims to report an overview of the most common neurological diseases (intervertebral disc herniation, degenerative myelopathy, fibrocartilaginous embolism, and polyradiculoneuritis), with a main focus on rehabilitative options and outcomes, reported in recent veterinary literature. Literature seems to be positively oriented on the efficacy of the rehabilitation approach, reporting a careful and prudent choice of the protocol to be applied for the correct recovery of the patient. However, blinded, controlled, prospective studies are still necessary, above all for degenerative myelopathy, fibrocartilaginous embolism, and polyradiculoneuritis. Intervertebral disc herniation, degenerative myelopathy, fibrocartilaginous embolism and polyradiculoneuritis often affect dogs; and physiotherapy may improve the patient's quality of life and/or reduce recovery times. The aim of this review was to evaluate the current scientific outcomes on these four neurological diseases and on their physiotherapy approaches. From the analysis of the published articles, it emerged that intervertebral disc herniation can be treated, with different rates of success, through a conservative or a surgical approach followed by physiotherapy. The literature is generally oriented toward the efficacy of the rehabilitation approach in this specific canine disease, often proposing intensive post-surgery physiotherapy for the most severe conditions with the absence of deep pain perception. When degenerative myelopathy, fibrocartilaginous embolism or polyradiculoneuritis occur, the existing literature supports the use of a physiotherapeutic approach: allowing a delay in the onset and worsening of the clinical signs in degenerative myelopathy, physical improvement, and, sometimes, complete remission during fibrocartilaginous embolism or acute idiopathic polyradiculoneuritis. However, papers on rehabilitation in dogs affected by polyradiculoneuritis are currently limited to single clinical cases and further blinded, controlled, prospective studies are still advisable for all four neurological diseases

    The NuRD Complex in Neurodevelopment and Disease: A Case of Sliding Doors

    Get PDF
    The Nucleosome Remodelling and Deacetylase (NuRD) complex represents one of the major chromatin remodelling complexes in mammalian cells, uniquely coupling the ability to “open” the chromatin by inducing nucleosome sliding with histone deacetylase activity. At the core of the NuRD complex are a family of ATPases named CHDs that utilise the energy produced by the hydrolysis of the ATP to induce chromatin structural changes. Recent studies have highlighted the prominent role played by the NuRD in regulating gene expression during brain development and in maintaining neuronal circuitry in the adult cerebellum. Importantly, components of the NuRD complex have been found to carry mutations that profoundly affect neurological and cognitive development in humans. Here, we discuss recent literature concerning the molecular structure of NuRD complexes and how the subunit composition and numerous permutations greatly determine their functions in the nervous system. We will also discuss the role of the CHD family members in an array of neurodevelopmental disorders. Special emphasis will be given to the mechanisms that regulate the NuRD complex composition and assembly in the cortex and how subtle mutations may result in profound defects of brain development and the adult nervous system

    Therapeutic advances in ADPKD: the future awaits

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder included in ciliopathies, representing the fourth cause of end stage renal disease (ESRD), with an estimated prevalence between 1:1000 and 1:2500. It is mainly caused by mutations in the PKD1 and PKD2 genes encoding for polycystin 1 (PC1) and polycystin 2 (PC2), which regulate differentiation, proliferation, survival, apoptosis, and autophagy. The advances in the knowledge of multiple molecular pathways involved in the pathophysiology of ADPKD led to the development of several treatments which are currently under investigation. Recently, the widespread approval of tolvaptan and, in Italy, of long-acting release octreotide (octreotide-LAR), represents but the beginning of the new therapeutic management of ADPKD patients. Encouraging results are expected from ongoing randomized controlled trials (RCTs), which are investigating not only drugs acting on the calcium/cyclic adenosin monoposphate (cAMP) pathway, the most studied target so far, but also molecules targeting specific pathophysiological pathways (e.g. epidermal growth factor (EGF) receptor, AMP-activated protein kinase (AMPK) and KEAP1-Nrf2) and sphingolipids. Moreover, studies on animal models and cultured cells have also provided further promising therapeutic strategies based on the role of intracellular calcium, cell cycle regulation, MAPK pathway, epigenetic DNA, interstitial inflammation, and cell therapy. Thus, in a near future, tailored therapy could be the key to changing the natural history of ADPKD thanks to the vigorous efforts that are being made to implement clinical and preclinical studies in this field. Our review aimed to summarize the spectrum of drugs that are available in the clinical practice and the most promising molecules undergoing clinical, animal, and cultured cell studies. Graphical abstract: [Figure not available: see fulltext.

    A robust numerical methodology for fatigue damage evolution simulation in composites

    Get PDF
    Composite materials, like metals, are subject to fatigue effects, representing one of the main causes for component collapse in carbon fiber‐reinforced polymers. Indeed, when subject to low stress cyclic loading, carbon fiber‐reinforced polymers exhibit gradual degradation of the mechanical properties. The numerical simulation of this phenomenon, which can strongly reduce time and costs to market, can be extremely expensive in terms of computational effort since a very high number of static analyses need to be run to take into account the real damage propagation due the fatigue effects. In this paper, a novel cycle jump strategy, named Smart Cycle strategy, is introduced in the numerical model to avoid the simulation of every single cycle and save computational resources. This cycle jump strategy can be seen as an enhancement of the empirical model proposed by Shokrieh and Lessard for the evaluation of the fatigue‐induced strength and stiffness degradation. Indeed, the Smart Cycle allows quickly obtaining a preliminary assessment of the fatigue behavior of composite structures. It is based on the hypothesis that the stress redistribution, due to the fatigue‐induced gradual degradation of the material properties, can be neglected until sudden fiber and/or matrix damage is verified at element/lamina level. The numerical procedure has been implemented in the commercial finite element code ANSYS MECHANICAL, by means of Ansys Parametric Design Languages (APDL). Briefly, the Smart Cycle routine is able to predict cycles where fatigue failure criteria are likely to be satisfied and to limit the numerical simulation to these cycles where a consistent damage propagation in terms of fiber and matrix breakage is expected. The proposed numerical strategy was preliminarily validated, in the frame of this research study, on 30° fiber‐oriented unidirectional coupons subjected to tensile– tensile fatigue loading conditions. The numerical results were compared with literature experimental data in terms of number of cycles at failure for different percentage of the static strength. Lastly, in order to assess its potential in terms of computational time saving on more complex structures and different loading conditions, the proposed numerical approach was used to investigate the fatigue behavior of a cross‐ply open‐hole composite panel under tension–tension fatigue loading conditions

    Characterization of Propagation Patterns with Omnipolar EGM in Epicardial Multi-Electrode Arrays

    Get PDF
    Omnipolar Electrogram (OP-EGM) is a recently proposed technique to characterize myocardial propagation in multi-electrode catheters regardless of the angle between propagation direction and catheter bipolar. This work aims to evaluate the accuracy of atrial propagation parameters obtained with OP-EGM in sinus rhythm (SR) and in different patterns of atrial fibrillation (AF).Real and simulated unipolar electrograms (u-EGMs) were used in this study. For both types of data, conduction velocity was obtained for each clique of 4 neighbour electrodes using OP-EGM. As a reference, conduction velocity was also computed from local activation times (LATs) using a linear propagation model.Analysis of simulated data showed that conduction velocity had good concordance with propagation patterns for both estimations, although the LAT-based errors were lower in most of the cases. When conduction velocity magnitude (CV) was 1 mm/ms, its estimation errors (expressed as mean ± std) calculated with OP-EGM and from LATs were 0.053 ± 0.005 mm/ms and 0.003 ±2.1 ×10-5 mm/ms, respectively, when focus was at 30 mm from the bottom of the tissue slice, while propagation direction angular errors were 6.64 ± 4.3°and 4.35 ± 2.8°. In real data, maps obtained with OP-EGM presented smoother and more coherent patterns than those based on LATs
    • 

    corecore