2,554 research outputs found

    Brain-Computer Interfaces: Investigating the Transition from Visually Evoked to Purely Imagined Steady-State Potentials

    Get PDF
    Brain-Computer Interfaces (BCIs) based on Steady State Visually Evoked Potentials (SSVEPs) have proven effective and provide significant accuracy and information-transfer rates. This family of strategies, however, requires external devices that provide the frequency stimuli required by the technique. This limits the scenarios in which they can be applied, especially when compared to other BCI approaches. In this work, we have investigated the possibility of obtaining frequency responses in the EEG output based on the pure visual imagination of SSVEP-eliciting stimuli. Our results show that not only that EEG signals present frequency-specific peaks related to the frequency the user is focusing on, but also that promising classification accuracy can be achieved, paving the way for a robust and reliable visual imagery BCI modality. Clinical relevance-Brain computer interfaces play a fundamental role in enhancing the quality of life of patients with severe motor impairments. Strategies based on purely imagined stimuli, like the one presented here, are particularly impacting, especially in the most severe cases

    Siblings Diagnosed With Primary Neuroendocrine Tumor of the Left Hepatic Duct

    Get PDF
    Primary left hepatic duct neuroendocrine tumors are extremely rare. We describe 2 cases of siblings, a 51-year-old brother and a 48-year-old sister, who were both diagnosed with primary left hepatic duct neuroendocrine tumor. Both patients underwent successful left hepatectomy and are both alive with no recurrence. For this rare malignancy, while definitive diagnosis is made only by histopathology, a margin-free surgical resection remains the only curative treatment modality to date

    Protective role of brain derived neurotrophic factor (BDNF) in obstructive sleep apnea syndrome (OSAS) patients

    Get PDF
    Obstructive sleep apnea syndrome (OSAS) is a common disorder characterized by repeated episodes of upper airways collapse during the sleep. The following intermittent hypoxia triggers a state of chronic inflammation, which also interests the nervous system leading to neuronal damage and increased risk of cognitive impairment. Brain derived neurotrophic factor (BDNF) is a growth factor often associated with neuroplasticity and neuroprotection whose levels increase in several condition associated with neuronal damage. However, whether patients affected by OSAS have altered BDNF levels and whether such alteration may be reflective of their cognitive impairment is still controversial. Here we show that, when compared to healthy control volunteers, OSAS patients have increased serum levels of BDNF. Moreover, OSAS patients with the higher levels of BDNF also have reduced neurocognitive impairment as measured by The Montreal Cognitive Assessment (MoCA) questionnaire. Treatment with standard non-invasive mechanical ventilation (CPAP) also was able to ameliorate the level of cognitive impairment. Altogether our results indicate that BDNF levels represent a neuroprotective response to intermittent hypoxia in OSAS patients

    A new tool for investigation platelet activation in endometriosis patients

    Get PDF
    Objectives: Endometriosis (EM) is a gynecological disease characterized by chronic inflammation, due to the interaction of inflammatory cells with ectopic endometrium (1). Platelets (PLTs), recruited by procoagulant factors released from endometriotic stromal cells, secrete angiogenetic factors and induce overexpression of genes involved in pro-survival/ anti-apoptotic propensity, inflammationand extracellular matrix remodeling (2). We aimed to develop a tool to measure PLT activation (by small extracellular vesicles, s-EVs) in EM peritoneal fluids, as a potential predictive marker of EM severity. Materials & methods: S-EVs were isolated from EM peritoneal fluids and characterized with imaging (Atomic Force Microscopy; AFM) and protein expression analyses (Western blot, WB) (3). We explored gene expression in peritoneum and EM lesions using EndometDB (4). Results: We demonstrated the presence of s-EVs isolated from EM peritoneal fluids by liquid AFM, as showed by contact angle vs diameter scatterplot (Fig.1A-B), and by WB detecting the s-EV markers CD63, CD9, and TSG101 (Fig.1C). Using Endomet-DB, we highlighted the differentially expressed genes between control and EM peritoneum samples (Fig.1D). The protein expression of a panel of biomarkers of PTL in s-EVs was further confirmed by WB (Fig.1E). Conclusions: We propose applying s-EV research to EM investigation, generating a novel biochemical tool for PLT activation assessment and for the development of new diagnostics and therapies

    The choreography of the chemical defensome response to insecticide stress: insights into the Anopheles stephensi transcriptome using RNA-Seq

    Get PDF
    Animals respond to chemical stress with an array of gene families and pathways termed "chemical defensome". In arthropods, despite many defensome genes have been detected, how their activation is arranged during toxic exposure remains poorly understood. Here, we sequenced the transcriptome of Anopheles stephensi larvae exposed for six, 24 and 48 hours to the LD50 dose of the insecticide permethrin to monitor transcriptional changes of defensome genes across time. A total of 177 genes involved in insecticide defense were differentially expressed (DE) in at least one time-point, including genes encoding for Phase 0, I, II, III and antioxidant enzymes and for Heat Shock and Cuticular Proteins. Three major patterns emerged throughout time. First, most of DE genes were down-regulated at all time-points, suggesting a reallocation of energetic resources during insecticide stress. Second, single genes and clusters of genes turn off and on from six to 48 hours of treatment, showing a modulated response across time. Third, the number of up-regulated genes peaked at six hours and then decreased during exposure. Our results give a first picture of how defensome gene families respond against toxicants and provide a valuable resource for understanding how defensome genes work together during insecticide stress

    Bispecific antibody detection using antigen-conjugated synthetic nucleic acid strands

    Get PDF
    We report here the development of two different sensing strategies based on the use of antigen-conjugated nucleic acid strands for the detection of a bispecific antibody against the tumor-related proteins Mucin1 and epidermal growth factor receptor. Both approaches work well in serum samples (nanomolar sensitivity), show high specificity against the two monospecific antibodies, and are rapid. The results presented here demonstrate the versatility of DNA-based platforms for the detection of bispecific antibodies and could represent a versatile alternative to other more reagent-intensive and time-consuming analytical approaches

    Algorithms Aside: Recommendation as the Lens of Life

    Get PDF
    In this position paper, we take the experimental approach of putting algorithms aside, and reflect on what recommenders would be for people if they were not tied to technology. By looking at some of the shortcomings that current recommenders have fallen into and discussing their limitations from a human point of view, we ask the question: if freed from all limitations, what should, and what could, RecSys be? We then turn to the idea that life itself is the best recommender system, and that people themselves are the query. By looking at how life brings people in contact with options that suit their needs or match their preferences, we hope to shed further light on what current RecSys could be doing better. Finally, we look at the forms that RecSys could take in the future. By formulating our vision beyond the reach of usual considerations and current limitations, including business models, algorithms, data sets, and evaluation methodologies, we attempt to arrive at fresh conclusions that may inspire the next steps taken by the community of researchers working on RecSys

    The Acquisition Camera System for SOXS at NTT

    Full text link
    SOXS (Son of X-Shooter) will be the new medium resolution (R\sim4500 for a 1 arcsec slit), high-efficiency, wide band spectrograph for the ESO-NTT telescope on La Silla. It will be able to cover simultaneously optical and NIR bands (350-2000nm) using two different arms and a pre-slit Common Path feeding system. SOXS will provide an unique facility to follow up any kind of transient event with the best possible response time in addition to high efficiency and availability. Furthermore, a Calibration Unit and an Acquisition Camera System with all the necessary relay optics will be connected to the Common Path sub-system. The Acquisition Camera, working in optical regime, will be primarily focused on target acquisition and secondary guiding, but will also provide an imaging mode for scientific photometry. In this work we give an overview of the Acquisition Camera System for SOXS with all the different functionalities. The optical and mechanical design of the system are also presented together with the preliminary performances in terms of optical quality, throughput, magnitude limits and photometric properties.Comment: 9 pages, 7 figures, SPIE conferenc

    MITS: the Multi-Imaging Transient Spectrograph for SOXS

    Get PDF
    The Son Of X-Shooter (SOXS) is a medium resolution spectrograph R~4500 proposed for the ESO 3.6 m NTT. We present the optical design of the UV-VIS arm of SOXS which employs high efficiency ion-etched gratings used in first order (m=1) as the main dispersers. The spectral band is split into four channels which are directed to individual gratings, and imaged simultaneously by a single three-element catadioptric camera. The expected throughput of our design is >60% including contingency. The SOXS collaboration expects first light in early 2021. This paper is one of several papers presented in these proceedings describing the full SOXS instrument
    corecore