20 research outputs found

    Spatial and temporal patterns of macroinvertebrate assemblages in the River Po catchment (Northern Italy)

    Get PDF
    In the last decade, large scale biomonitoring programs have been implemented to obtain a robust understanding of freshwater in the name of helping to inform and develop effective restoration and management plans. A comprehensive biomonitoring dataset on the macroinvertebrate assemblages inhabiting the rivers of the Po Valley (northern Italy), comprised a total of 6762 sampling events (period 2007–2018), was analyzed in this study in order to examine coarse spatial and temporal trends displayed by biotic communities. Our results showed that macroinvertebrate compositions and derived structural and functional metrics were controlled by multiple environmental drivers, including altitude and climate (large scale), as well as habitat characteristics (local scale). Altitude proved to be the primary geographic driver, likely due to its association with thermal and precipitation regimes, thus explaining its overriding influence on macroinvertebrate assemblages. Significant temporal variations were observed across the study period, but notably in 2017, the overall taxonomic richness and diversity increased at the expense of Ephemeroptera, Plectoptera and Trichoptera taxa during an unprecedented heatwave that occurred across southern Europe. The detail of this study dataset allowed for important environmental attributes (e.g., altitude, habitat characteristics) shaping biotic communities to be identified, along with ecologically vulnerable regions and time periods (e.g., extreme climatic events). Such research is required globally to help inform large-scale management and restoration efforts that are sustainable over long-term periods

    Responses of benthic invertebrates to chemical recovery from acidification

    Get PDF
    Prosjektleder: Heleen de WitThe report provides an assessment of biological recovery from acidification in freshwater environments in Europe. The report consists of two parts, a regional data analysis based on an international dataset of biological and water chemical records, and a collection of national contributions on monitoring and assessment of biological recovery in different countries. The regional analysis showed that 47% of all included rivers (21 sites, for the period 1994-2018) and 35% percent of all lakes (34 sites, for the period 2000 to 2018) showed significant increases in species richness. Correlations between species diversity and water chemical components (ANC, pH, SO4) were found, supporting that the biological responses were related to chemical recovery. Additionally, the composition of functional traits in rivers underwent significant changes over time. Both parts of the report demonstrate ongoing biological recovery from acidification in European acid-sensitive freshwater environments.Norwegian Ministry of Climate and Environment, United Nations Economic Commission for Europe (UNECE)publishedVersio

    The recovery of European freshwater biodiversity has come to a halt

    Get PDF
    Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.publishedVersio

    Multi-decadal improvements in the ecological quality of European rivers are not consistently reflected in biodiversity metrics

    Get PDF
    Humans impact terrestrial, marine and freshwater ecosystems, yet many broad-scale studies have found no systematic, negative biodiversity changes (for example, decreasing abundance or taxon richness). Here we show that mixed biodiversity responses may arise because community metrics show variable responses to anthropogenic impacts across broad spatial scales. We first quantified temporal trends in anthropogenic impacts for 1,365 riverine invertebrate communities from 23 European countries, based on similarity to least-impacted reference communities. Reference comparisons provide necessary, but often missing, baselines for evaluating whether communities are negatively impacted or have improved (less or more similar, respectively). We then determined whether changing impacts were consistently reflected in metrics of community abundance, taxon richness, evenness and composition. Invertebrate communities improved, that is, became more similar to reference conditions, from 1992 until the 2010s, after which improvements plateaued. Improvements were generally reflected by higher taxon richness, providing evidence that certain community metrics can broadly indicate anthropogenic impacts. However, richness responses were highly variable among sites, and we found no consistent responses in community abundance, evenness or composition. These findings suggest that, without sufficient data and careful metric selection, many common community metrics cannot reliably reflect anthropogenic impacts, helping explain the prevalence of mixed biodiversity trends.We thank J. England for assistance with calculating ecological quality and the biomonitoring indices in the UK. Funding for authors, data collection and processing was provided by the European Union Horizon 2020 project eLTER PLUS (grant number 871128). F.A. was supported by the Swiss National Science Foundation (grant numbers 310030_197410 and 31003A_173074) and the University of Zurich Research Priority Program Global Change and Biodiversity. J.B. and M.A.-C. were funded by the European Commission, under the L‘Instrument Financier pour l’Environnement (LIFE) Nature and Biodiversity program, as part of the project LIFE-DIVAQUA (LIFE18 NAT/ES/000121) and also by the project ‘WATERLANDS’ (PID2019-107085RB-I00) funded by the Ministerio de Ciencia, Innovación y Universidades (MCIN) and Agencia Estatal de Investigación (AEI; MCIN/AEI/10.13039/501100011033/ and by the European Regional Development Fund (ERDF) ‘A way of making Europe’. N.J.B. and V.P. were supported by the Lithuanian Environmental Protection Agency (https://aaa.lrv.lt/) who collected the data and were funded by the Lithuanian Research Council (project number S-PD-22-72). J.H. was supported by the Academy of Finland (grant number 331957). S.C.J. acknowledges funding by the Leibniz Competition project Freshwater Megafauna Futures and the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung or BMBF; 033W034A). A.L. acknowledges funding by the Spanish Ministry of Science and Innovation (PID2020-115830GB-100). P.P., M.P. and M.S. were supported by the Czech Science Foundation (GA23-05268S and P505-20-17305S) and thank the Czech Hydrometeorological Institute and the state enterprises Povodí for the data used to calculate ecological quality metrics from the Czech surface water monitoring program. H.T. was supported by the Estonian Research Council (number PRG1266) and by the Estonian national program ‘Humanitarian and natural science collections’. M.J.F. acknowledges the support of Fundação para a Ciência e Tecnologia, Portugal, through the projects UIDB/04292/2020 and UIDP/04292/2020 granted to the Marine and Environmental Sciences Centre, LA/P/0069/2020 granted to the Associate Laboratory Aquatic Research Network (ARNET), and a Call Estímulo ao Emprego Científico (CEEC) contract.Peer reviewe

    The recovery of European freshwater biodiversity has come to a halt

    Get PDF
    Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.N. Kaffenberger helped with initial data compilation. Funding for authors and data collection and processing was provided by the EU Horizon 2020 project eLTER PLUS (grant agreement no. 871128); the German Federal Ministry of Education and Research (BMBF; 033W034A); the German Research Foundation (DFG FZT 118, 202548816); Czech Republic project no. P505-20-17305S; the Leibniz Competition (J45/2018, P74/2018); the Spanish Ministerio de Economía, Industria y Competitividad—Agencia Estatal de Investigación and the European Regional Development Fund (MECODISPER project CTM 2017-89295-P); Ramón y Cajal contracts and the project funded by the Spanish Ministry of Science and Innovation (RYC2019-027446-I, RYC2020-029829-I, PID2020-115830GB-100); the Danish Environment Agency; the Norwegian Environment Agency; SOMINCOR—Lundin mining & FCT—Fundação para a Ciência e Tecnologia, Portugal; the Swedish University of Agricultural Sciences; the Swiss National Science Foundation (grant PP00P3_179089); the EU LIFE programme (DIVAQUA project, LIFE18 NAT/ES/000121); the UK Natural Environment Research Council (GLiTRS project NE/V006886/1 and NE/R016429/1 as part of the UK-SCAPE programme); the Autonomous Province of Bolzano (Italy); and the Estonian Research Council (grant no. PRG1266), Estonian National Program ‘Humanitarian and natural science collections’. The Environment Agency of England, the Scottish Environmental Protection Agency and Natural Resources Wales provided publicly available data. We acknowledge the members of the Flanders Environment Agency for providing data. This article is a contribution of the Alliance for Freshwater Life (www.allianceforfreshwaterlife.org).Peer reviewe

    Macroinvertebrate assemblages and biodiversity levels: ecological role of constructed wetlands and artificial ponds in a natural park

    No full text
    Normal 0 14 false false false MicrosoftInternetExplorer4 Constructed wetlands play an important role in water supply, floodwater retention and nutrient removal, at the same time allowing the restoration of lost habitat and the preservation of biodiversity. There is little knowledge about the biodiversity that can be found in these artificial environments along time, especially at the invertebrate community level. Macroinvertebrate assemblages, water chemistry, morphology, and environmental characteristics of natural ponds, artificial pools and constructed wetlands in Parco Pineta (Northern Italy) were studied to evaluate the effects of local factors on macroinvertebrate communities. The objective was to verify if each ecosystem could equally contribute to local biodiversity, regardless of its natural or artificial origin. Principal Components Analysis showed that ponds were divided into clusters, based on their morphology and their water quality, independently from their origin. The composition of macroinvertebrate communities was similar among natural wetlands and ponds artificially created to provide new habitats in the park, while it was different among natural wetlands and constructed wetlands created for wastewater treatment purposes. Biodiversity of natural ponds and constructed wetlands, evaluated using taxa richness, Shannon index, and Pielou index, was comparable. Canonical Correspondence Analysis highlighted differences in macroinvertebrate community composition and pointed out the relationships among macroinvertebrates and various environmental variables: habitat heterogeneity resulted as the most relevant factor that influences taxa richness. Water quality also affects the macroinvertebrate community structure. We determined that constructed wetlands with higher pollutant concentrations show different assemblage compositions but comparable overall macroinvertebrate biodiversity. Constructed wetlands became valuable ecological elements in the area almost immediately, due to fast colonizing invertebrates. However, we also assume that differences in macroinvertebrate assemblage compositions among wetlands with different origins lead to differences in the functionality of each ecosystem. <object classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui> st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabella normale"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} <![endif]--

    Geotargeting spatial and temporal data of Italian freshwater high-altitude macroinvertebrates

    No full text
    A data set including information on macroinvertebrates identified to genus/species group/species level was created within the monitoring activities of several European and national projects. The data set includes 2111 macroinvertebrate records on temporal fragmentary data from lakes Paione (upper, middle, and lower lakes Paione), and 530 records on spatial data relative to eight other high-altitude lakes from the Ossola Valley (North-western Italy, Piedmont, Central Alps). The study area is included within the Lake Maggiore watershed. All records are georeferenced because, since the beginning of the studies, temporal data were taken in the same sampling sites over years. The temporal data span the period 1989-2020, the spatial data refer to the 2019-2020 sampling activity. The dataset is available for download in .csv format at the Global Biodiversity Information Facility (GBIF) data infrastructure

    Lab-scale testing of operation parameters for algae based treatment of piggery wastewater

    No full text
    BACKGROUND: Microalgae–bacteria-based processes are among the most promising low-cost technologies to treat livestock wastewaters. The current literature reports the need for pretreatment or dilution of piggery wastewater for adequate microalgal growth. The aim of this study is to optimize the potential of microalgal–bacterial communities to treat undiluted and untreated piggery wastewater by investigating the influence of some operational parameters such as phosphorus and CO 2 availability and hydraulic retention time on the nitrogen removal efficiency and biomass productivity. RESULTS: The microalgal community (dominated by Chlorella spp.) developed quickly and remained quite stable. The rates of biomass production and NH 4 -N removal were 55 ± 30 mg TSS L −1  day −1 and 13 ± 3 mg NH 4 -N L −1  day −1 respectively. CO 2 adjustment had a positive effect on microalgal growth and NH 4 -N removal. CONCLUSION: Data confirm the ability of the microalgal–bacterial consortium to grow on undiluted and untreated piggery wastewater under semi-continuous conditions. Synergy between algae and bacteria seems positive since photosynthesis produces the oxygen needed for ammonia oxidation. © 2019 Society of Chemical Industry

    Flow regimes control the establishment of invasive crayfish and alter their effects on lotic macroinvertebrate communities

    No full text
    Invasive non-native species (INNS) threaten biodiversity and ecosystem functioning globally. However, there remains a pressing need to understand the environmental factors controlling the dispersal, successful establishment and subsequent ecological impacts of INNS for receiving ecosystems. Here, we examine how region-wide flow regime magnitudes facilitate the successful establishment of an invasive crayfish species (Pacifastacus leniusculus, signal crayfish) in England (UK). We also consider the interactive effects of invasive crayfish with flow regime variations on the structural and functional diversity of macroinvertebrate communities.Low-flow magnitudes increased the likelihood of P. leniusculus establishment, with 80% of recorded invasion dates falling in years with flow magnitudes below average (low- and low-moderate flow classes), whilst only 1.6% occurred in high-flow years.Temporal trajectories of structural and functional macroinvertebrate responses in invaded rivers demonstrated reduced diversity compared to control rivers. Lower taxonomic and functional richness measures typically coincided with periods of low discharge in invaded rivers and were greatest during regionally high-flows.Macroinvertebrate communities displayed significant structural and functional responses to the interaction between invasive crayfish and flow regime variations. Specifically, a number of low- and high-flow indices yielded significant associations, highlighting the role of extreme hydrological events in shaping INNS effects on receiving ecosystems. We also detected greater ecological effects of invasive crayfish under hydrologically stable conditions. Importantly, and for the first time, we observed that invasive crayfish reversed macroinvertebrate community responses to flow regime cues (e.g. discharge fall rate and minimum flows in the preceding 180 days).Synthesis and applications. Results from this study indicate that low-flow events facilitate the spread/establishment of invasive crayfish and correspond with greater ecological effects for receiving ecosystems. Given that low-flow events are predicted to increase in intensity, duration and frequency over the 21st century, our results highlight the potential threat that invasive crayfish may pose under future hydroclimatic changes. Managing river flow regimes effectively (including maintaining higher flow events and flow variability) is likely to be vital in conserving ecological diversity following crayfish invasion.</div
    corecore