37 research outputs found

    The Wnt/\u3b2-catenin Signaling: A Microenvironmental Support To Chemoresistance In Acute Myeloid Leukemia

    Get PDF
    The Wnt/\u3b2-catenin signaling is an evolutionarily conserved pathway that plays a pivotal role in the regulation of cell differentiation and self-renewal. It is considered one of the main components of the hematopoiesis and its impairment can lead to the development of acute myeloid leukemia (AML). In the last years, it was reported that human bone marrow mesenchymal stromal cells (hBM-MSCs) support the growth and chemoresistance of leukemia cells, but their contribution to Wnt/\u3b2-catenin signaling in AML cells is still unclear. In this study, we first analyzed the expression pattern of Wnt/\u3b2-catenin components and their correlation with the clinical outcome of AML patients, observing high expression levels of \u3b2-catenin and its active form (phospho-Ser675) in intermediate and poor-risk groups of patients. Accordingly, patients with a lower activation of Wnt/\u3b2-catenin signaling showed longer progression-free survival. Then, we demonstrated that hBM-MSCs increase the activity of nuclear \u3b2-catenin in blast cells, suggesting that Wnt signaling could be involved in the crosstalk between bone marrow stroma and leukemia cells. Therefore, we investigated the anti-leukemia effects of pharmacological Wnt (Niclosamide and PNU-74654) or GSK-3 (LiCl and AR-A014418) inhibitors in combination or not with classic anti-leukemia drugs (Ara-C and Idarubicin). In vitro, Wnt/GSK-3 inhibitors significantly reduced cell proliferation and cell viability, improving drug sensitivity of AML cells cultured alone or in presence of hMB-MSCs. In vivo, PNU-74654, Niclosamide, and LiCl, acting synergistically with Ara-C, dramatically reduced the engraftment of human CD45+ leukemic cells, thus improving animal survival. In conclusion, our results suggest that \u3b2-catenin could be useful as a prognostic marker for AML patients and its inhibition could represent a new potential therapeutic strategy to improve patient outcome and to overcome the chemoresistance mediated by tumor microenvironment

    Familial glioma

    Get PDF
    Glioma is the most common brain tumor, characterized by several histological and malignancy grade. The majority of gliomas are sporadic, but some familial cases have been reported (< 5%). Despite hereditary predisposition to gliomas has been associated to rare inherited cancer syndromes, such as Li-Fraumeni and Turcot's syndromes, neurofibromatosis and tuberous sclerosis, not all familial gliomas can be explained by these syndromes. Most familial gliomas seem to be characterized by cluster of two cases, suggesting the involvment of low penetrance factor risks. Moreover, no sex-linked disorders or SNPs on the X chromosome have been associated with increased glioma risk, except for ATRX gene, whose loss-of-function has been observed in 20 % of adult oligodendrogliomas and in 80 % of grade 2 and 3 astrocytomas. Finally, the risk to inherit tumors such as glioma could also be related to combinations of multiple risk variants: besides GWAS analysis identified many SNPs involved in familial gliomas at 5p15.33 (TERT), 7p11.2 (EGFR), 8q24.21 (CCDC26), 9p21.3 (CDKN2A/CDKN2B), 11q23.3 (PHLDB1) and 20q13.33 (RTEL1), mutatio could be associated with the risk of glioma ns in POT1 gene and rare variants in SPAG9 and RUNDC1 genes could be associated with the risk of glioma

    Functional dosing of mesenchymal stromal cell-derived extracellular vesicles for the prevention of acute graft-versus-host-disease

    Get PDF
    Graft-vs-host-disease (GvHD) is currently the main complication of allogeneic hematopoietic stem cell transplantation. Mortality and morbidity rates are particularly high, especially in steroid-refractory acute GvHD (aGvHD). Immune regulatory human bone marrow mesenchymal stromal cells (hMB-MSCs) represent a therapeutic approach to address this issue. Unfortunately, their effect is hardly predictable in vivo due to several variables, that is, MSC tissue origin, concentration, dose number, administration route and timing, and inflammatory status of the recipient. Interestingly, human bone marrow MSC-derived extracellular vesicles (hBM-MSC-EVs) display many of the hBM-MSC immunoregulatory properties due to their content in paracrine factors that greatly varies according to the collection method. In this study, we focused on the immunological characterization of hBM-MSC-EVs on their capability of inducing regulatory T-cells (T-regs) both in vitro and in a xenograft mouse model of aGvHD. We correlated these data with the aGvHD incidence and degree following hBM-MSC-EV intravenous administration. Thus, we first quantified the EV immunomodulation in vitro in terms of EV immunomodulatory functional unit (EV-IFU), that is, the lowest concentration of EVs leading in vitro to at least threefold increase of the T-regs compared with controls. Second, we established the EV therapeutic dose in vivo (EV-TD) corresponding to 10-fold the in vitro EV-IFU. According to this approach, we observed a significant improvement of both mouse survival and control of aGvHD onset and progression. This study confirms that EVs may represent an alternative to whole MSCs for aGvHD prevention, once the effective dose is reproducibly identified according to EV-IFU and EV-TD definition

    Bacterial and viral investigations combined with determination of phytoplankton and algal biotoxins in mussels and water from a Mediterranean coastal lagoon (Sardinia, Italy).

    Get PDF
    Calich Lagoon is a Mediterranean coastal lagoon located along the northwestern coast of Sardinia (Italy). The connection to marine and fresh water determines the high productivity of this coastal lagoon. Despite its great potential and the presence of natural beds of bivalve mollusks (Mytilus galloprovincialis), the lagoon has not yet been classified for shellfish production. In this study, through a multidisciplinary approach, the presence of several bacterial pathogens (Escherichia coli, Salmonella spp., and Vibrio spp.) and viral pathogens (hepatitis A virus and norovirus genogroups I and II) was evaluated from March 2017 to February 2018. In addition, phytoplankton composition in lagoon waters and associated algal biotoxins (paralytic and diarrhetic shellfish poisoning) in mussels were also monitored. The aim of this study was to provide useful data to improve knowledge about their seasonal presence and to assess the potential risk for public health, as well as to provide input for future conservation and management strategies. In mussels, Salmonella spp. were found in spring, along with E. coli, but Salmonella spp. were not found in autumn or winter, even though E. coli was detected in these seasons. Vibrio parahaemolyticus was found in autumn and winter, but not in spring. Norovirus genogroups I and II were found in winter samples. None of the bacteria were found in summer. Algal biotoxins have never been detected in mussel samples. Among potentially harmful phytoplankton, only Pseudo-nitzschia spp. were present, mainly in summer. The results showed that a possible bacterial and viral contamination, together with the presence of potentially toxic microalgae, is a real problem. Therefore, the development of natural resource management strategies is necessary to ensure the good quality of waters and guarantee the protection of consumers

    Targeting the Endothelin-1 Receptors Curtails Tumor Growth and Angiogenesis in Multiple Myeloma

    Get PDF
    The endothelin-1 (ET-1) receptors were recently found to mediate pro-survival functions in multiple myeloma (MM) cells in response to autocrine ET-1. This study investigated the effectiveness of macitentan, a dual ET-1 receptor antagonist, in MM treatment, and the mechanisms underlying its activities. Macitentan affected significantly MM cell (RPMI-8226, U266, KMS-12-PE) survival and pro-angiogenic cytokine release by down-modulating ET-1-activated MAPK/ERK and HIF-1 alpha pathways, respectively. HIF-1 alpha silencing abrogated the ET-1 mediated induction of genes encoding for pro-angiogenic cytokines such as VEGF-A, IL-8, Adrenomedullin, and ET-1 itself. Upon exposure to macitentan, MM cells cultured in the presence of the hypoxia-mimetic agent CoCl2, exogenous ET-1, or CoCl2 plus ET-1, down-regulated HIF-1 alpha and the transcription and release of downstream pro-angiogenic cytokines. Consistently, macitentan limited significantly the basal pro-angiogenic activity of RPMI-8226 cells in chorioallantoic membrane assay. In xenograft mouse models, established by injecting NOG mice either via intra-caudal vein with U266 or subcutaneously with RPMI-8226 cells, macitentan reduced effectively the number of MM cells infiltrating bone marrow, and the size and microvascular density of subcutaneous MM tumors. ET-1 receptors targeting by macitentan represents an effective anti-proliferative and anti-angiogenic therapeutic approach in preclinical settings of MM

    Extracellular Vesicles Mediate Mesenchymal Stromal Cell-Dependent Regulation of B Cell PI3K-AKT Signaling Pathway and Actin Cytoskeleton

    Get PDF
    Mesenchymal stromal cells (MSCs) are adult, multipotent cells of mesodermal origin representing the progenitors of all stromal tissues. MSCs possess significant and broad immunomodulatory functions affecting both adaptive and innate immune responses once MSCs are primed by the inflammatory microenvironment. Recently, the role of extracellular vesicles (EVs) in mediating the therapeutic effects of MSCs has been recognized. Nevertheless, the molecular mechanisms responsible for the immunomodulatory properties of MSC-derived EVs (MSC-EVs) are still poorly characterized. Therefore, we carried out a molecular characterization of MSC-EV content by high-throughput approaches. We analyzed miRNA and protein expression profile in cellular and vesicular compartments both in normal and inflammatory conditions. We found several proteins and miRNAs involved in immunological processes, such as MOES, LG3BP, PTX3, and S10A6 proteins, miR-155-5p, and miR-497-5p. Different in silico approaches were also performed to correlate miRNA and protein expression profile and then to evaluate the putative molecules or pathways involved in immunoregulatory properties mediated by MSC-EVs. PI3K-AKT signaling pathway and the regulation of actin cytoskeleton were identified and functionally validated in vitro as key mediators of MSC/B cell communication mediated by MSC-EVs. In conclusion, we identified different molecules and pathways responsible for immunoregulatory properties mediated by MSC-EVs, thus identifying novel therapeutic targets as safer and more useful alternatives to cell or EV-based therapeutic approaches

    Notch Signaling and MicroRNA: The Dynamic Duo Steering Between Neurogenesis and Glioblastomas.

    Get PDF
    Notch signaling is an evolutionary conserved pathway that plays a central role in development and differentiation of eukaryotic cells. It has been well documented that Notch signaling is inevitable for neuronal cell growth and homeostasis. It regulates process of differentiation from early embryonic stages to fully developed brain. To achieve this streamlined development of neuronal cells, a number of cellular processes are being orchestrated by the Notch signaling. Abrogated Notch signaling is related to several brain tumors, including glioblastomas. On the other hand, microRNAs are small molecules that play decisive role in mediating and modulating Notch signaling. This review discusses the crucial role of Notch signaling in development of nervous system and how this versatile pathway interplay with microRNAs in glioblastoma. This review sheds light on interplay between abrogated Notch signaling and miRNAs in the regulation of neuronal differentiation with special focus on miRNAs mediated regulation of tumorigenesis in glioblastoma. Furthermore, it discusses different aspects of neurogenesis modulated by the Notch signaling that could be exploited for the identification of new diagnostic tools and therapies for the treatment of glioblastoma

    New evidence of pectenotoxins in farmed bivalve molluscs from Sardinia (Italy)

    Get PDF
    Several planktonic dinoflagellates can produce lipophilic phycotoxins that represent a significant threat to public health as well as to shellfish and fish farming. Poisoning related to some of these toxins is categorised as diarrhetic shellfish poisoning. We analysed 975 shellfish samples from Tortolì in the central-eastern region of Sardinia (Italy) from January 2016 to March 2020, to investigate the prevalence of different lipophilic marine biotoxins in mollusc bivalves. The results highlighted the predominant presence of toxins belonging to the okadaic acid group in all samples with toxin concentrations exceeding legal limits, and revealed the new occurrence of pectenotoxins in oysters and clams with a winter seasonality in recent years. The origin of shellfish toxicity was associated with the same Dinophysis species, mainly D. acuminata. Based on both these results and other precedents, monitoring and recording systems are strongly recommended

    Role of Notch Signaling Pathway in Glioblastoma Multiforme Pathogenesis

    No full text
    Notch signaling is an evolutionarily conserved pathway that regulates important biological processes, such as cell proliferation, apoptosis, migration, self-renewal, and differentiation. In mammals, Notch signaling is composed of four receptors (Notch1&ndash;4) and five ligands (Dll1-3&ndash;4, Jagged1&ndash;2) that mainly contribute to the development and maintenance of the central nervous system (CNS). Neural stem cells (NSCs) are the starting point for neurogenesis and other neurological functions, representing an essential aspect for the homeostasis of the CNS. Therefore, genetic and functional alterations to NSCs can lead to the development of brain tumors, including glioblastoma multiforme (GBM). GBM remains an incurable disease, and the reason for the failure of current therapies and tumor relapse is the presence of a small subpopulation of tumor cells known as glioma stem cells (GSCs), characterized by their stem cell-like properties and aggressive phenotype. Growing evidence reveals that Notch signaling is highly active in GSCs, where it suppresses differentiation and maintains stem-like properties, contributing to GBM tumorigenesis and conventional-treatment resistance. In this review, we try to give a comprehensive view of the contribution of Notch signaling to GBM and its possible implication as a target for new therapeutic approaches
    corecore