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Abstract

Graft-vs-host-disease (GvHD) is currently the main complication of allogeneic hema-

topoietic stem cell transplantation. Mortality and morbidity rates are particularly high,

especially in steroid-refractory acute GvHD (aGvHD). Immune regulatory human

bone marrow mesenchymal stromal cells (hMB-MSCs) represent a therapeutic

approach to address this issue. Unfortunately, their effect is hardly predictable

in vivo due to several variables, that is, MSC tissue origin, concentration, dose num-

ber, administration route and timing, and inflammatory status of the recipient. Inter-

estingly, human bone marrow MSC-derived extracellular vesicles (hBM-MSC-EVs)

display many of the hBM-MSC immunoregulatory properties due to their content in

paracrine factors that greatly varies according to the collection method. In this study,

we focused on the immunological characterization of hBM-MSC-EVs on their capa-

bility of inducing regulatory T-cells (T-regs) both in vitro and in a xenograft mouse

model of aGvHD. We correlated these data with the aGvHD incidence and degree

following hBM-MSC-EV intravenous administration. Thus, we first quantified the

EV immunomodulation in vitro in terms of EV immunomodulatory functional unit

(EV-IFU), that is, the lowest concentration of EVs leading in vitro to at least threefold

increase of the T-regs compared with controls. Second, we established the EV thera-

peutic dose in vivo (EV-TD) corresponding to 10-fold the in vitro EV-IFU. According

to this approach, we observed a significant improvement of both mouse survival and

control of aGvHD onset and progression. This study confirms that EVs may represent

an alternative to whole MSCs for aGvHD prevention, once the effective dose is

reproducibly identified according to EV-IFU and EV-TD definition.
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1 | INTRODUCTION

The main complication of allogeneic hematopoietic stem cell transplanta-

tion (Allo-HSCT) is graft-vs-host-disease (GvHD), a donor T-cell-mediatedGiada Dal Collo, Annalisa Adamo, and Alessandro Gatti shared first co-authorship.
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alloreactive inflammatory disease affecting 20%-70% of patients.1-4

GvHD, initially classified as acute (aGvHD) and chronic (cGvHD) on the

basis of the onset time after Allo-HSCT (aGvHD <100 days, cGvHD

>100 days), is now described according to a new scoring system based on

the clinical signs and symptoms and pathogenesis.5-8 Clinical manifesta-

tions of aGvHD involve the skin, the gastrointestinal tract, and the liver

and include maculopapular erythema, gastrointestinal symptoms (abdom-

inal cramps and diarrhea), and cholestatic hepatitis, whereas cGvHD can

virtually affect any tissue/organ.9,10 Immunosuppression with steroids is

currently the first-line therapy for aGvHD.11 However, refractoriness to

steroid-based protocols characterizes about 30% of the patients; aggres-

sive immunosuppressive treatments or anti-inflammatory agents are

effective in a variable proportion of steroid-refractory patients, but the

overall survival is generally poor, with only a few long-term survivors.12,13

Consequently, alternative approaches, such as the administration of mes-

enchymal stromal cells (MSCs), have been proposed in the last decade for

refractory aGvHD treatment.14-17 In 2004, the first successful use of

MSCs was reported in severe aGvHD treatment.14 Since then, several

clinical and preclinical studies have been performed with controversial

results due to the heterogeneity in the treatment schedules (ie, MSC con-

centration, dose number, administration route, and timing) and to other

factors, such as MSC tissue origin and inflammatory status of the recipi-

ent.17-21 Similar controversial results and side effects (eg, pulmonary

embolization) were shown by preclinical studies performed in mouse

models.22-24

Human bone marrow-derived MSCs (hBM-MSCs) are a hetero-

geneous fibroblast-like cell population, including both multipotent

stem cells with the ability to form bone, cartilage, and adipose tissue

in vitro25 and stromal cell components that regulate hematopoietic

stem cell niche through specific cell-to-cell interactions and soluble

factor release.26 In 2006, the International Society for Cell & Gene

Therapy (ISCT) established the minimal criteria to define MSCs, that

is, the ability to grow as adherent cells, the membrane surface

expression of a marker combination pattern, including CD73, CD90,

and CD105 together with the lack of CD14, CD31, CD34, CD45,

and HLA-DR expression, and the ability to differentiate into adipo-

cytes, osteoblasts, and chondrocytes.27 A general functional feature

of MSC population, both of stem cells and differentiating progeni-

tors, is the acquisition of immunomodulatory properties toward

cells of both innate and adaptive immunity, depending on the pres-

ence of inflammatory cytokines in the microenvironment, such as

interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and interleukin

(IL)-1α or β.28

The immunoregulatory functions of MSCs can be mediated not

only by direct cell-to-cell contact, but also in a paracrine manner,

mostly through the release of extracellular vesicles (EVs).29,30 EVs are

spherical membrane-coated particles consisting of a lipid bilayer sur-

rounding a glycoproteic and nucleic acid content.31 According to their

size and content, EVs are classified as microvesicles, exosomes, and

apoptotic bodies, each with different biological effects.31,32 Our group

has recently shown in vitro that hBM-MSC-EVs are capable of medi-

ating immunoregulatory effects towards different immune effector

cells (IECs) by inhibiting B- and NK-cell proliferation and increasing

CD4+ T-cell population, thus suggesting a possible involvement of

T-regulatory cells (T-regs).30,33 T-regs, a subset of CD4+ T cells

expressing the IL-2 alpha-chain-receptor (CD25) and the nuclear tran-

scription factor Forkhead box P3 (FoxP3), can suppress proliferation

and effector functions in T-, B-, NK-cells, as well as antigen-

presenting cells34; consequently, T-reg-based cell therapies could be

effective the treatment of various autoimmune diseases, including

GvHD.35 The same inflammatory cytokines that trigger immunoregu-

latory functions of hBM-MSCs and therefore hBM-MSC-EVs, such as

TNF-α and IFN-γ, also promote T-reg activation and inhibitory func-

tions, thus enhancing the protection towards GvHD-associated tissue

injury in mouse models of Allo-HSCT.36,37 Consequently, hBM-MSC-

EVs may represent a potential therapeutic tool for aGvHD treatment,

provided some safety requirements for clinical use are satisfied.38

Among them, the use of heterologous supplements for hBM-MSC cul-

ture and EV collection, such as fetal bovine serum (FBS), should be

avoided to minimize the risk of infectious contaminants, such as

mycoplasma, viruses, endotoxins, or prions.39 To this aim, human

platelet lysate (hPL) has been clinically tested for safety in many pro-

tocols of human MSC ex vivo culture and expansion.39,40 hPL contains

a wide variety of growth and angiogenic factors, including platelet-

derived growth factor (PDGF)-AA, PDGF-AB, and PDGF-BB, trans-

forming growth factor (TGF)-β1 and TGF-β2, epidermal growth factor,

vascular endothelial growth factor, basic-fibroblast growth factor,

brain-derived neurotrophic factor, and hepatocyte growth factor.40

Thus, hPL seems to be a suitable substitute of FBS, in terms of repro-

ducibility and safety, for ex vivo MSC-EV production for preclinical

and clinical purposes.39,40

After systemic injection, the half-life of circulating EVs is approxi-

mately 2 minutes, but EVs have been detected after 48 hours in lungs,

liver, spleen, and pancreas,41 thus suggesting a potential long-term

therapeutic effect once administered intravenously. On this basis, sev-

eral studies suggest a potential therapeutic role of EVs in inflamma-

tory and autoimmune diseases, such as aGvHD38; however, the lack

of standardized treatment protocols still represents a major hurdle to

clearly demonstrate the in vivo effectiveness of EV administration.

Significance statement

A number of extracellular vesicle (EV) pools have been used

in the study obtained from different donor-derived bone

marrow mesenchymal stromal cells expanded in human

platelet lysate-conditioned medium, displaying in vitro the

same reproducible immune regulatory activity, regardless of

their protein concentration. The effectiveness of these EV

pools was then tested in vivo in a xenogeneic mouse model

of severe acute graft-vs-host-disease (aGvHD). Thus, the

functional parameters were defined in vitro and in vivo to

measure and predict the capability of EVs to improve mouse

survival and control of aGvHD progression.
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In this study, we first assessed the best culture conditions to

obtain hBM-MSC-EVs by comparing cell expansion and regulatory

properties toward different IECs with either FBS- or hPL-

supplemented culture media. Then, we evaluated both in vitro and

in vivo in a mouse xenograft model of aGvHD, the therapeutic poten-

tial of hPL-hBM-MSC-EVs. Thus, we could confirm that EVs may rep-

resent a valid alternative to whole MSC administration for aGvHD

treatment. In addition, the definition of EV immunomodulatory func-

tional unit (EV-IFU) in vitro and EV therapeutic dose in vivo (EV-TD)

may help to standardize the identification of the EV effective dose for

clinical purposes.

2 | MATERIALS AND METHODS

2.1 | Cell culture

MSCs were isolated from BM aspirates of healthy donors (after

informed consent, approved by Ethical Committee of Azienda

Ospedaliera Universitaria Integrata Verona; N.1828, May 12, 2010,

“Institution of cell and tissue collection for biomedical research

in Onco-Hematology”), expanded and characterized as already

described.30,42 hBM-MSCs were cultured in a minimal essential

medium supplemented with either 10% FBS, FBS-hBM-MSCs, or

5%-8% hPL40 (first and following passages, respectively) and hepa-

rin sodium (3 IU/mL), hPL-hBM-MSCs, 1% penicillin-streptomycin,

and 2% L-Glutamine (Sigma-Aldrich). hPL was obtained from a

platelet-rich plasma pool of 15 healthy donors, following the stan-

dardized clinical-grade procedures already described (40) according

to the Italian ministerial regulation “DM November 2, 2019,” thus

minimizing the variability of the process. Samples of hPL were

stored at −80�C for 16 hours, and then centrifuged twice at 4000g

for 20 minutes. Prior to medium preparation, FBS and hPL were

depleted in EVs through ultracentrifugation as previously

described.30 To avoid any contamination of serum EVs, the EV-free

medium was filtered by using a 0.2-μm filter that removes the largest

population of EVs. The absence of the smallest population of EVs

(exosomes) was evaluated by FACS, assessing the negative expression of

the well-established exosome markers in EV-depleted culture media. In

addition, the hPL-MSCs used in our work were routinely tested for

mycoplasma contamination, which was excluded. hBM-MSCs at 80%

confluence were treated (primed hBM-MSCs) or not (resting hBM-

MSCs) for 48 hours with 10 ng/mL IFN-γ and 15 ng/mL TNF-α (R&D

Systems) to induce inflammatory priming. Human peripheral blood

mononuclear cells (PBMCs) were isolated using Lymphoprep (Stemcells

Technologies) and used for IEC isolation through immunomagnetic nega-

tive selection (Miltenyi Biotec) with at least 95% cell purity. For immuno-

logical assay, IECswere activated through specific stimuli (T cells: 0.5 μg/

mL of anti-CD3 and anti-CD28 (PeliCluster); B cells: 2.5 μg/mL CPG

ODN (InvivoGen), 50 ng/mL CD40L (R&D systems), 5 μg/mL MAB

50 (R&D systems), 20 U/mL IL-2 (Miltenyi Biotec), and 2 μg/mL FAB

(IgG,IgM, IgA) (Jackson Immunoresearch); NK-cells: 100 U/mL IL-2

(Miltenyi Biotec).

2.2 | FACS analysis

The identity of hBM-MSCs was checked according to the ISCT guidelines

and characterized for the presence of mesenchymal markers, that is,

CD73-PE, CD90-PE, and CD105-PE (BD Bioscience); the absence of

endothelial and hematopoietic markers, that is, CD14-PE, CD31-PE,

CD34-PE, and CD45-PE (BD Bioscience); as well as immunological

markers, that is, HLA-ABC-PE and HLA-DR-PE (BD Bioscience). The

inflammatory immunophenotype of hBM-MSCs was established by the

detection of inflammatory markers, including CD54-PE, CD80-PE,

CD86-PE, CD106 PE, HLA-ABC-PE, HLA-DR-PE (BD Bioscience),

CD273-APC, CD274-PE, and CD279-PE (Biolegend). PBMCs were char-

acterized using CD3-FITC, CD16/56-PE, CD45-PerCP, CD19-APC,

CD4-APC-H7, and CD8-PECy7 (BD Bioscience), whereas cell viability

was assessed by using TO-PRO-3-iodide (Life Technologies) or Viobility

Fixable Dyes-V500 (Miltenyi Biotec). T-reg immunophenotype was

assessed by labeling the samples with CD3-V450, CD4-PerCP,

CD8-APC-Cy7, CD25-FITC, CD127-PE-Cy7, FoxP3-APC, Viobility Fix-

able Dyes-V500 (Miltenyi Biotec), and the experiments were performed

according to manufacturer's instructions of FoxP3 Staining Buffer Set

(Miltenyi Biotec). The gating strategy was performed on viable CD3+ and

CD4+ T cells and then on CD25+CD127low cells to define T-reg pheno-

type. All data were collected through flow cytometry (FACS Canto II, BD

Bioscience) and analyzed using FlowJo software (TreeStar).

2.3 | Proliferation and cytotoxicity assay

To study cell proliferation, activated IECs were labeled with 5 μM

carboxy-fluorescein-succinimidyl-ester (CFSE) (Life Technologies), as

previously described,43 and co-cultured with resting or primed-hBM-

MSCs for 4 days (B cells) or 6 days (T and NK cells) at the MSCs:IECs

ratio of 1:10 and 1:1 (T cells and B, NK cells, respectively). Cytotoxic-

ity was analyzed through DELFIA cell cytotoxicity kit. The experi-

ments were performed according to the manufacturer's instructions

(Perkin Elmer), using activated NK-cells for 48 hours and co-cultured

with BATDA-labeled hBM-MSCs at the NK-cells:hBM-MSCs ratios of

1:1, 5:1, 15:1, 25:1 at 37�C for 3 hours. Fluorescence was measured

at 615 nm using VICTORTMX4.

2.4 | Purification, characterization, and
quantification of hBM-MSC-EVs

Following cell expansion in EV-free conditioned medium, hBM-MSC-

EVs were isolated from hBM-MSCs supernatant by ultracentrifuga-

tion, as previously described.30 EV pools were obtained by mixing EVs

isolated from 5 hPL-hBM-MSC donors, with the purpose to reduce

inter-individual variability. Isolated EVs were resuspended in

phosphate-buffered saline (PBS) and stored at −80�C. EV protein

quantification was performed through BCA (bicinchoninic acid) Pro-

tein Assay (Thermo Fisher Scientific). Particle size was evaluated by

dynamic light scattering (DLS) measurements using a Zetasizer Nano
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ZS (Malvern Instruments, 4 mV He-Ne laser, l0 = 633 nm, " = 173�).

The DLS method can measure particles ranging from 1 nm to 6 μm.

The eventual presence of membrane fragments with different size

and shape can be easily detected in the hydrodynamic diameter distri-

bution plots of the particle's suspension analyzed. To assess the

expression pattern of surface markers, 10 μg of EVs were analyzed

using the MACSPlex Exosome Kit (Miltenyi Biotec), a multiplex bead-

based platform allowing the detection of 37 surface epitopes. Samples

were analyzed with FACS Canto II (BD Biosciences).

2.5 | Transmission electron microscopy

Stored EV samples were thawed on ice. Ten microliters of EVs were

pipetted on an ultra-thin carbon coated copper grid (CF200H-Cu-UL,

Electron Microscopy Sciences) for 5 minutes and the excess was

removed by gentle blotting. The grid was previously treated with UV

light for 15 minutes. The grid was placed on one drop of UranyLess

solution (Electron Microscopy Sciences) for 1 second, gently blotted,

and then put on a second drop for 2 minutes. The excess of solution

was removed by blotting. The grid was air-dried. Grid was visualized

on a Morgagni 268D (FEI Philips) transmission electron microscope at

80 kV. Images were taken with MegaView G3 camera and RADIUS

software (both from EMSIS GmbH).

2.6 | Xenograft mouse model

NOD/Shi-scid/IL-2Rγnull (NOG) mice were purchased from Taconic

(Germantown, New York) and kept in pathogen-free conditions in the

animal facility of the Interdepartmental Centre of Experimental

Research Service (CIRSAL) of the University of Verona, as approved

by the Italian Minister of Health. To induce aGvHD, 1 × 106 human

PBMCs/g (PBS-only as control) were injected via tail vein into 8- to

12-week-old female mice previously irradiated with 1.2 Gy from a
137Cs source. The PBMCs derived from different batches, one for

each in vivo experiment (n = 5, from PBMCs 1 to PBMCs 5).

Mice were randomized and split into two treatment groups: (a) EV-UT

mice (untreated aGvHD mice) receiving PBS i.v. and (b) EV-TD mice

(treated aGvHD mice) receiving EV-TD i.v. at +1, +4, +7 days after

PBMC injection. Mice were monitored daily until the end of experi-

ments (day +30), evaluating the onset of aGvHD clinical symptoms,

weight loss, and overall survival. Mice were ethically euthanized when

either the weight loss was over 20% of the initial weight or the cumu-

lative clinical score was 6 (Table 1).

2.7 | Evaluation of T-cell infiltration and T-reg
induction in in vivo aGvHD model

Lung, liver, spleen, and kidney were collected from sacrificed aGvHD

mice, and dissociated with 1 mM PBS EDTA, following the manufac-

turer's instructions of gentle MACS Dissociator (Miltenyi Biotec). BM

was harvested through flushing, whereas peripheral blood (PB) was

collected from retroorbital vein in tubes with heparin or D-Phenylalanyl-

L-prolyl-L-arginine chloromethyl ketone (PPACK) (Sigma-Aldrich). PB

samples were maintained at 4�C to avoid coagulation. To evaluate lym-

phocyte infiltration in mouse tissues and T-reg induction in PB, IECs and

T-regs were analyzed by FACS Canto II (BD Biosciences). Splenomegaly

wasmeasured by the caliber, on day 15 after PBMC inoculation.

2.8 | ELISA assay

PB collection through retroorbital bleeding in aGvHD mice, previously

anesthetized by isoflurane, was performed at +9 and +12 days. Plasma

samples were obtained by centrifugation for 10 minutes at 2000g.

Human cytokine levels (IFN-γ and TNF-α) in plasma samples were ana-

lyzed through Quantikine ELISA kit. The experiments were performed

according to the manufacturer's instructions (R&D Systems). The levels

of human cytokines were determined using VICTORTMX4 at 450 nm,

and the concentrations reported in pg/mL.

2.9 | Statistics and image software

Statistical analysis was performed using GraphPad Prism software

(La Jolla, California). Data were expressed as mean ± standard error

TABLE 1 Clinical scoring system used for aGvHD onset evaluation in NOG mice

Clinical score 0 0.5 1 1.5 2

Posture Normal Slight hunching Moderate hunching but

correct movement

Strong hunching and

slightly impaired movement

Strong hunching and distinct

impaired movement

Activity Normal Less movement than

normal, easier to catch

Very little movement Animal stay still but will

move when touched

Animal has no activity also

when touched

Fur Normal Slight ruffling

on the neck

Slight ruffling on the neck,

belly and back

Moderate ruffling all

over the body

Matted Fur and color

changing (yellowing)

Notes: Clinical scoring before aGvHD mouse euthanasia. Mice were ethically euthanized before the end of the experiment (day +30) when the cumulative

clinical score was 6.

Abbreviation: aGvHD, acute graft-vs-host-disease.
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means. Student's t-test was used to compare two groups, and one-

way ANOVA followed by the Tukey's range test was applied to com-

pare multiple groups. Mann-Whitney's test was used for noncoupled,

nonparametric comparison. Differences in Kaplan-Meier survival cur-

ves were analyzed with the Log-rank (Mantel-Cox) test. P < .05 was

considered as statistically significant. Adobe Illustrator software

(Adobe Inc.) was used to perform the 2D-protocol.

3 | RESULTS

3.1 | Superiority of hPL-supplemented medium for
hBM-MSC expansion and immunoregulatory studies

In line with the literature data,44 five healthy donor-derived hBM-MSC

samples were expanded by using either FBS- or hPL-supplemented cul-

ture media until the end of the cell expansion (day 19 ± 2), and

consequently characterized according to the ISCT guidelines.27 Even

though hPL-hBM-MSCs showed a stronger expression of CD73, CD90,

and HLA-ABC compared with FBS-hBM-MSCs, immunophenotypic pat-

tern was similar for FBS- and hPL-hBM-MSCs (Figure S1A). Mesodermal

differentiation was comparable with the two culture protocols

(Figure S1B). Cell growth rate at day 19 ± 2 was higher in hPL-hBM-

MSCs, as assessed through total cell number at the first cell passage

(p1) (Figure S1C), the clonogenicity (Figure S1D), and the population dou-

bling (Figure S1E), thus confirming the superiority of the hPL-based

medium to enhance hBM-MSC expansion. At p3, both FBS- and hPL-

hBM-MSCs showed a normal karyotype (Figure S2A). Moreover, in hPL-

hBM-MSCs no significant differenceswere observed in expression levels

of some oncogenes, onco-suppressors, and cell cycle regulator genes,

such as C-MYC, hTERT, TP53, and CDKN1A, between p0 and p1. hTERT

was undetectable in the two kinds of hBM-MSCs (data not shown). After

showing that hPL-supplemented medium did not influence functional

and molecular characterization of hBM-MSCs, we focused on the

F IGURE 1 Immunomodulatory properties of hBM-MSCs expanded in hPL-based culture medium. A, FBS- and hPL-hBM-MSCs were
treated (primed hBM-MSCs) or not (resting hBM-MSCs) with IFN-γ (10 ng/mL) and TNF-α (15 ng/mL) for 48 hours. The expression of
surface markers (CD54, CD106, HLA-ABC, HLA-DR, CD274, CD273) was evaluated by FACS analysis. Results are represented as fold
change expression of each specific marker compared with isotype control. Error bars represent mean ± SEM of five independent
experiments. Mann-Whitney test was used for statistical analysis. B, Both resting and primed FBS- and hPL-hBM-MSCs were incubated at

different activated NK-cells:hBM-MSCs ratios (1:1, 5:1, 15:1, 25:1) for 3 hours. Data are represented as NK cell-specific lysis. Error bars
represent mean ± SEM of five independent experiments. Mann-Whitney test was used for statistical analysis. C, Activated IECs were co-
cultured alone or in the presence of rhBM-MSCs or phBM-MSCs for 4 days (with B-cells) or 6 days (with T- and NK-cells) at the MSCs:IEC
ratio of 1:10 and 1:1 (with T-cells and B-, NK-cells, respectively). Data are represented as percentage of relative proliferating cells. Error
bars represent mean ± SEM of five independent experiments. Mann-Whitney test was used for statistical analysis. *P < .05, **P < .01.
FBS, fetal bovine serum; hBM-MSCs, human bone marrow-derived MSCs; hPL, human platelet lysate; IECs, immune effector cells; MSCs,
mesenchymal stromal cells
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immunological properties of hPL-BM-MSCs, demonstrating that hPL-

hBM-MSCs were also capable of acquiring the inflammatory phenotype,

that is, increased expression of CD54 (I-CAM), CD106 (V-CAM), HLA-

DR (MHC-II), CD273 (PD-L2), and CD274 (PD-L1) (Figure 1A and S3A).

In addition, hPL-BM-MSCs showed higher expression of HLA-ABC

(MHC-I) following inflammatory priming (Figure 1A and S3A), compared

with FBS-hBM-MSCs. Our data demonstrated that resting-hBM-MSCs

displayed a partial sensitivity to NK cell-mediated lysis, which was

prevented by inflammatory priming, without significant differences

between FBS- and hPL-hBM-MSCs (Figure 1B), in line with previous

reports.28 We also found that resting hPL-hBM-MSCs inhibited T- and

NK-cell proliferation and showed a trophic effect toward B cells. In

contrast, both primed FBS- and hPL-hBM-MSCs inhibited more

significantly T- and NK-cell proliferation and affected B cells although

without significant differences (Figure 1C). Overall, our data showed that

hPL-based expansion protocol did not affect hBM-MSC immunological

properties and inhibitory functions, but it confers superiority in terms

of expansion yield. As we have previously demonstrated that

hBM-MSC-EVs exhibit most of the properties of hBM-MSCs,32 the

hPL-based expansion protocol was chosen to obtain hBM-MSC-EVs for

the further experiments.

3.2 | Characterization of EVs obtained from
hPL-hBM-MSCs

Considering the potential capability of serum EV to influence cell behav-

ior, we first assessed the absence of hPL-derived EVs in the EV-free

medium. With this aim, hBM-MSC-EVs were isolated as pellet by ultra-

centrifugation and were washed repeatedly with PBS to eliminate any

medium-derived protein contamination. In addition, we evaluated by

FACS analysis the expression of the well-established exosome markers

in EV-depleted and filtered hPL culture media. CD9, CD63, and CD81

resulted negative compared with hPL-MSC-EVs (Figure 2A). Our previ-

ous data showed that EVs from resting- and primed FBS-hBM-MSCs

stored at −80�C maintain their integrity, as revealed by DLS profile.33 In

F IGURE 2 Size, surface marker characterization, and protein quantification of hPL-hBM-MSC-derived EVs. A, Background-corrected median
fluorescence intensity of CD9, CD63, and CD81 markers in EV-depleted medium and hPL-hBM-MSC-EVs assessed by FACS. B, Hydrodynamic
diameter distribution plots measured on EVs freshly isolated from hPL-hBM-MSCs. Exosomes are represented by the smallest sizes on the left,
ranging from 25 to 90 nm, whereas microvesicles by the largest sizes on the right, ranging from 100 to 500 nm. Error bars represent mean ± SEM
obtained from at least five measurements of six independent samples. All experiments were performed in PBS at 25�C. C, Wide-field TEM image

of hPL-MSC-EVs revealing the abundance of EVs. Scale bar: 100 nm. D, Background corrected median fluorescence intensity of CD9, CD63,
CD81 markers, and corresponding isotype controls on rEVs and pEVs (n = 5 and n = 3, respectively). E, EVs were isolated from six different
treated hPL-hBM-MSCs (pEVs) or not treated (rEVs) with IFN-γ (10 ng/mL) and TNF-α (15 ng/mL) for 48 hours. Scatter plot shows the absolute
protein concentration of rEVs (on the left) and pEVs (on the right), through BCA protein assay. Error bars represent mean ± SEM obtained from at
least six independent samples. F, Background-corrected median fluorescence intensity of 36 surface epitopes on rEVs and pEVs (n = 5 and n = 3,
respectively). BCA, bicinchoninic acid; EVs, extracellular vesicles; hBM-MSCs, human bone marrow-derived MSCs; hPL, human platelet lysate;
MSCs, mesenchymal stromal cells; TEM, transmission electron microscopy
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hPL-hBM-MSC-EVs, isolated through ultracentrifugation from the

supernatant of cells cultured in EV-free conditioned medium,30 we could

recognize exosomes, ranging 25-90 nm, and microvesicles, ranging

100-500 nm (Figure 2B). To confirm the presence of EVs obtained from

cell culture media, an aliquot of resuspended hPL-MSC-EVs was visual-

ized by using transmission electron microscopy (TEM). An abundance of

particles with the expected diameter and morphology of EVs was pre-

sent (Figure 2C). The spherical appearance of these particles suggested

that they maintained their integrity following the isolation process. As

also confirmed by DLS measurements, qualitative assessment of TEM

images suggested that most of the isolated EVs fell within the exosome

size range, whereas EVs with the microvesicle size range were less fre-

quent. Both resting- (rEVs) and primed-EVs (pEVs) showed similar pro-

tein concentration according to the BCA Protein Assay (Figure 2D).

Further characterization includes the assessment of the EV surface

marker profile by using a multiplex bead-based platform (Figure S3B).

Both rEVs and pEVs were positive for the exosome markers including

CD63, CD9, and CD81 (Figure 2E). EVs were also positive for CD29,

CD44, CD105 (Figure 2F). As previously observed for FBS-hBM-MSC-

EVs,33 hPL-hBM-MSC-EVs expressed SSEA-4, an early embryonic glyco-

lipid antigen identifying the adult MSC population derived from BM,45

and CD146, characterizing a specific subpopulation of MSCs with high

therapeutic potential.46 In summary, hPL-hBM-MSC-EVs are very similar

to FBS-hBM-MSC-EVs in terms of size, surface expression markers, and

protein content, thus suggesting that hPL-supplemented medium does

not modify significantly the molecular, proteomic, and immunological

properties of hBM-MSC-EVs.

3.3 | T-reg induction mediates EV
immunomodulatory effect in vitro

The ability of hBM-MSCs to drive CD4+ T-cell functional switch

toward the T-reg phenotype (CD4+CD25+CD127lowFoxP3+) has been

previously reported.46 EV-mediated immune regulation seems to be

particularly related to reduce proliferation of B- and NK-cells, rather

than T-cell proliferation.30 However, our group has previously

described in vitro a relative increase in CD4+ T-cell population follow-

ing the co-culture with EVs.30 Here, we assessed the effect of rEVs

and pEVs on T-cells, by measuring the phenotypic switch of CD4+

T-cells toward T-regs. We tested on activated T-cells the effect of

increasing quantities of EVs, as assessed by protein concentration

F IGURE 3 In vitro assay and gating strategy to study the induction of EV-mediated T-regulatory cells. A, 2 × 105 activated T-cells were
co-cultured for 7 days in the presence or not of different amount of rEVs and pEVs in terms of protein concentration (8.5, 17, and 34 μg). Then,
T-reg induction was evaluated through FACS analysis. The histogram shows the T-reg proportion (calculated as the percentage of
CD4+CD25+CD127lowFoxP3+ cells on CD4+ cells and normalized on untreated T cells) following the treatment with rEVs and pEVs. Data were
compared using Student's unpaired t tests. Error bars represent mean ± SEM obtained from at least each measurement of three (for 8.5 μg) or
five (for 17 and 34 μg) independent experiments. *P < .05, **P < .01. B, Gating strategy for evaluating T-reg proportion in the presence or not of
rEVs and pEVs. CD3+ and the subset of CD4+ cells were gated on lymphocyte population. T-regs were defined as CD4+CD25+CD127lowFOXP3+

T-cells. The last four scatter plots show the representative percentages of T-regs, calculated on CD4+ cells, following the addition of different EV
concentrations (8.5, 17, and 34 μg). EVs, extracellular vesicles
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(0, 8.5, 17, and 34 μg), obtained from single-donor hPL-hBM-MSCs.

After 7 days of co-culture, FACS analysis demonstrated that EVs were

capable of inducing a relative increase in T-reg population (Figure 3A).

A significant increase of the proportion of T-regs was observed with

both rEVs (1.88 ± 0.09, 3.77 ± 2.35, and 4.88 ± 2.90 at 8.5, 17, and

34 μg EV protein concentration, respectively) and pEVs (1.13 ± 0.16,

3.40 ± 2.08, and 4.54 ± 2.80 at 8.5, 17, and 34 μg EV protein concen-

tration, respectively) compared with the control (activated T-cells

without EV addition—0 μg EVs) (Figure 3A). Notably, despite the

increasing EV concentration, T-reg induction reached a plateau at

around threefold increase. These findings suggest that T-reg induction

plays a role in the immune regulatory effect of EVs on T-cells, and a

cutoff value of threefold increase of T-reg population may be used

in vitro as surrogate of EV immunological activity.

3.4 | Standardization of aGvHD mouse model to
assess in vivo the effectiveness of EV administration

Before performing in vivo experiments, we determined by FACS

analysis, a median composition of each PBMC batch, with the

following results: 81% ± 9% for T-cells, 5.5% ± 3.5% for B-cells, and

9% ± 4% for NK-cells, as expected in healthy donors (Figure S4A).

Activated T-cells showed a proliferation rate over 90% compared

with unstimulated PBMCs, as assessed by CFSE assay (Figure S4B).

Based on these in vitro data, NOG mice were treated with sublethal

total body irradiation (TBI) and intravenously injected with human

PBMCs, as described above. Mice were then individually scored

twice a week according to three clinical parameters (posture, activ-

ity, fur) on a scale ranging from 0 to 2 (Table 1). Figure 4A

summarizes the relative weight loss following PBMC inoculation

until day +30, compared with the control group (PBS-only mice).

Acute GvHD started at day +9 in aGvHD mouse group (PBMCs 1-5),

whereas control mice showed rapid weight recovery and then pro-

gressive gain until the end of the experiment (Figure 4A). A signifi-

cant mortality rate occurred in aGvHD mice between days +12 and

+17, particularly at days +13/+14, when the maximum aGvHD clini-

cal score was observed (Figure 4B). A significant infiltration of

human CD45+ cells, mostly CD3+ T-cells, was revealed in aGvHD

mouse organs and tissues (BM, lung, liver, spleen, kidney, PB) by

FACS analysis and immunohistochemistry (Figure 4C and Figure 5A).

Remarkably, spleen size was significantly increased in aGvHD mice

F IGURE 4 Grading of aGvHD mouse model. A, Weight change curves of aGvHD mice (PBMCs 1-5, n = 5) and control mice (PBS-only, n = 5).

Data were compared using Student's unpaired t tests and multiple t tests. B, Kaplan-Meier survival curves of aGvHD mice (PBMCs 1-5, n = 5) and
control mice (PBS-only, n = 5). Log-rank (Mantel-Cox) test was used for statistical analysis. ****P < .0001. Data were obtained with five
independent experiments. C, Human infiltrating cells (left) in different mouse target organs (n = 5). Data are represented as the percentage of
human (hCD45+) cells on total CD45+ cells including mouse cells (hCD45+ and mCD45+ cells). Error bars represent mean ± SEM of three
independent experiments. Human infiltrating T-cells (right) in different mouse target organs (n = 5). Data are represented as percentage of hCD3+

cells on hCD45+ cells. Error bars represent mean ± SEM of three independent experiments. aGvHD, acute graft-vs-host-disease; PBS, phosphate-
buffered saline; PBMCs, peripheral blood mononuclear cells
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compared with control (Figure S4C). Immunohistochemistry analysis

displayed a less broad T-cell infiltration in skin and small intestine,

whereas in the liver, portal lymphocytic infiltration, endotheliosis,

hepatocyte apoptosis, and biliary duct, damages were evident

(Figure 5A). The histopathologic score was used to quantify aGvHD

severity (Table 2) since the parameters described in Table 3. All these

data confirmed that our mouse model mimic human severe aGvHD

in a reproducible manner.

3.5 | Definition of in vitro EV-IFU and in vivo
EV-TD of hPL-hBM-MSC-derived EVs

On the basis of in vitro data (Figure 3A) and the absence of significant

differences between rEVs and pEVs, particularly as far as T-reg induc-

tion is concerned (Figure 3A), we tried to identify a reproducible

approach to define the EV-IFU capable of producing a significant immu-

nomodulatory effect in vitro. To reduce the intrinsic variability of

single-donor EVs, we adopted an EV-pooling approach by isolating and

pooling rEVs from five donor-hPL-hBM-MSCs cultured in the EV-free

conditioned medium.30 Next, we analyzed the capabilities of EV pools

to promote T-reg induction in the same condition of protein concentra-

tion, as described above (0, 8.5, 17, and 34 μg) with single donor rEV

(Figure 3A). According to our in vitro data on T-reg induction EVs

(Figure 3A), we defined EV-IFU as the lowest concentration of each

rEV-pool leading in vitro to at least threefold increase of T-regs com-

pared with controls. In other words, we assumed that different rEV

pools from different donors may have the same EV-IFU, and therefore

the same reproducible immune regulatory activity, although their pro-

tein concentration is different, thus focusing our selection on biological

effects rather than protein concentration. Accordingly, we identified

three suitable rEV-pools displaying EV-IFU (1 with 17 μg and 2 with

34 μg proteins each). They were subsequently used for in vivo experi-

ments in aGvHDmice (Figure 6A, red dots).

To assess the therapeutic efficacy of the rEV-pools in vivo, a total

dose equal to 10-fold the in vitro EV-IFU was split into three different

doses and administered to aGvHD mice at day +1, +4, and +7, thus

representing the EV-TD. Mice injected with human PBMCs to induce

F IGURE 5 Histopathological evaluation of mouse tissues. Tissues from aGvHD or control (CTRL) mice (lung, liver, spleen, intestine, skin, and
kidney) were fixed and stained with Hematoxylin and Eosin or anti-hCD3 to evaluate tissue damage and T-cell infiltration, respectively. Black
arrow A = apoptosis, red arrow B = biliary damage, arrow green P = portal infiltrate, blue arrow E = endotheliitis. Scale bars: Low magnification
200 μm; high magnification 50 μm. aGvHD, acute graft-vs-host-disease
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aGvHD and treated with EV-TD (EV-TD mice) were compared with

controls, that is, untreated aGvHD mice (EV-UT mice) receiving three

doses of PBS only. At day +9 and +12, the number of human T-reg,T
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TABLE 3 Histologic scoring (0-4) of lung, liver, spleen, kidney,
skin, and intestine of aGvHD mice based on histopathological
evaluation of mouse tissues at high magnification

Organs Damage Score

Lung,

spleen,

kidney

Inflammation 0 No infiltration

1 Sporadic or <5% infiltration

2 Mild infiltration of 5%-25%

3 Moderate infiltration of 25%-50%

4 Severe infiltration of >60%

Liver Portal infiltrate 0 None

1 Mild, some, or all portal areas

2 Moderate, some, or all portal areas

3 Moderate/marked, all portal areas

4 Marked, all portal areas

Biliary damage 0 Absent

1 Minimal

2 Mild and diffuse

3 Moderate

4 Severe with new small bile duct

present in all portal area

Centrilobular vein

endotheliitis

0 Normal (occasional lymphocytes

around portal triads are

acceptable)

1 Rare (1-2/0.5 cm) focal collections

of mononuclear cells in

parenchyma)

2 Endotheliosis present in one

vessel/0.5 cm (subendothelial

infiltrate of a depth at least two

cells in one vessel)

3 Endotheliosis present in >3

vessels/0.5 cm with the

infiltrating depth >3 cells

4 Endotheliosis as above present in

virtually all vessels

Apoptosis 0 Absent

1 Minimal (<2 foci 10×)

2 Moderate (2–4 foci 10×)

3 Severe (>5 foci 10×)

Skin Inflammation 0 None

1 Focal infiltrates

2 Widespread infiltrates

Small

intestine

Inflammation 0 None

1 Mild

2 Moderate

3 Severe without ulceration

4 Severe, with ulceration

Abbreviation: aGvHD, acute graft-vs-host-disease.
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CD4+, and CD8+ T-cells in mouse PB as well as at day +9 the plasma

levels of human cytokines, such as TNF-α and IFN-γ, were measured.

We then monitored aGvHD onset and progression through several clini-

cal parameters (Table 1), weight loss, and overall survival. Such therapeu-

tic schedule significantly improved the overall survival of EV-TD mice

compared with EV-UT mice (Figure 7A); none of the EV-UT mice sur-

vived beyond day +17, whereas EV-TD mice were still alive until day

+28 (Figure 7A). In addition, EV-TD administration hampered significantly

the onset of aGvHD clinical signs, reducing the weight loss (11.5% in the

EV-TD mice vs 19.5% in EV-UT mice at day +13, **P < .01) (Figure 7B).

No significant changes were observed in the histopathologic score of the

EV-TD mouse organs compared with the EV-UT ones (data not shown).

These findings are in line with those recently shown by other authors47

and are related to the short follow-up of the experimental plan that was

mainly aimed at quantifying reproducibly the effectiveness of EV admin-

istration schedule. Nevertheless, i.v. administration of EV-TD was associ-

ated with the temporary increase of circulating T-regs as well as of the

plasmatic levels of TNF-α and IFN-γ, that is, the cytokine involved in

both EV immunomodulation48,49 and T-reg expansion.50 In fact, at day

+9, that is, 2 days after the administration of the last dose of EV-TD,

T-regs were significantly increased in PB of EV-TD compared with EV-

UT mice, whereas at day +12, the two groups showed similar T-reg levels

(Figure 7C). In addition, at day +9, the plasma levels of human TNF-α

and, IFN-γ were significantly increased in EV-TD mice compared with

EV-UT mice (TNF-α: 67.45 ± 24.01 pg/mL in EV-TD mice vs 39.55 ±

15.36 pg/mL in EV-UT mice; IFN-γ: 7.43 ± 2.86 pg/mL in EV-TD mice

vs 5.21 ± 1.12 pg/mL in EV-UT mice, respectively) (Figure 7D). Nonethe-

less, i.v. administration of EV-TD was associated to a nonsignificant mod-

ulation of circulating CD4+ and CD8+ T-cells (CD3+CD4+: 1.33 ± 1.28

and 1.18 ± 0.9, CD3+CD8+: 0.83 ± 0.55 and 0.93 ± 0.85 at days 9 and

12, respectively) (Figure S5).

4 | DISCUSSION

In 2014 a compassionate case of severe therapy-refractory aGvHD,

affecting about 30% of the Allo-HSCT patients, was treated with

MSC-derived EVs of four different BM-unrelated donors. The patient

recovered within a few months after repeated treatments, suggesting

that MSC-derived EVs could provide a potential cell-free and safe tool

to treat severe aGvHD and other inflammatory diseases.51 Further

evidence of aGvHD improvement following therapeutic infusion of

hBM-MSC-EVs, possibly due to their peculiar microRNA profiles, was

recently published,47 suggesting that hBM-MSC-EVs represent a

potential answer for important issues related to MSC clinical use. In

fact, although MSCs have been proven to be effective in treating

refractory aGvHD,15 their immune regulatory properties are hardly

predictable in vivo for several intrinsic and extrinsic reasons. Different

MSC tissue origin, concentration, dose number, administration route,

and timing as well the inflammatory status of the recipient may lead

to opposite results in terms of efficacy, thus questioning in some

cases the validity of their clinical use.52,53

Conversely, the use of MSC-derived EVs to prevent and treat

steroid-refractory aGvHD provides several potential advantages com-

pared with whole MSC administration.38 Although they contain high

concentrations of proteins and nucleic acids, including DNA and dif-

ferent RNA types, acting as powerful regulators of many cell func-

tions, EVs are cell particles devoid of autonomous replication and

therefore of neoplastic transformation risk.29 In addition, EVs can be

sterilized by filtration due to their small size and, theoretically, it is

possible to harvest EVs even from supernatants of immortalized MSC

cell lines, which otherwise could not be used for cellular therapies.51

Thus, the regulatory issues to produce EVs for clinical purposes can

be less complicated than for any other cellular strategy based on

ex vivo cell expansion and systemic administration into patients.51

Unfortunately, so far, the main challenge remains the precise

characterization of the therapeutic EV content as well as the defini-

tion of the effective EV dose before infusion to predict the clinical

benefit with good approximation. Even though hBM-MSC-EVs display

many of the BM-MSC immune regulatory properties, their content in

paracrine factors greatly varies according to the techniques used for

EV separation and the activation status of MSCs.31,32 Differential

ultracentrifugation (with or without immunomagnetic selection) is

commonly used to characterize all the EVs released by MSCs, includ-

ing small and large vesicles, and to obtain a final product devoid of

additional chemicals that could influence both functional studies and

clinical application.54 Several other EV-selecting platforms have been

developed, such as immunomagnetic exosome RNA analysis, miniatur-

ized micro-nuclear magnetic resonance microfluidic chip system,

Exochip, label-free high-throughput nano-plasmonic exosome assay

using surface plasmon resonance and other procedures. Nevertheless,

most of the studies on the EV biological activities are still based on

indirect in vitro evidence, especially in the context of the immune sys-

tem.32 This issue has triggered many different attempts to define reli-

able assays for characterizing the functionality of MSC-EV

preparations prior to administration into patients.37

F IGURE 6 Definition of therapeutic protocol for in vivo
experiments. Representative graph to define the in vitro EV-IFU:
2 × 105 activated T-cells (0.5 μg/mL anti-CD3 and 0.5 μg/mL anti-
CD28 antibodies) were co-cultured for 7 days with different rEV-
pools at three different EV concentrations (8.5, 17, and 34 μg). The
red spots display the rEV-pools increasing at least threefold the
number of T-regs compared with the control (activated T-cells
without EV addition, 0 μg of rEV-pool). These three suitable rEV-
pools (one with 17 μg and two with 34 μg proteins each) were then
used for in vivo experiments in aGvHD mice. Error bars represent
mean ± SEM of three independent experiments. aGvHD, acute graft-
vs-host-disease; EV, extracellular vesicle; EV-IFU, EV
immunomodulatory functional unit
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In this study, we established a simple method to characterize repro-

ducibly the EV immune regulatory activity according to their capability to

induce in vitro and in vivo a specific immunological effect that is impor-

tant for aGvHD amelioration, that is, T-reg induction,55 rather than on

the basis of their protein content and concentration. In fact, the simple

protein quantification does not reflect the measurable biological effects,

because the protein content may vary qualitatively according to many

factors related to donor or expansion procedures. This evidence explains

the resulting heterogeneity described in the literature. Therefore, consid-

ering the well-known limitations of considering only protein concentra-

tion for EVs quantification, we suggested a more reliable method of EV

quantification by combining their protein concentrationwith a biomarker

of their biological activity (T-reg induction). We found that this immuno-

modulatory mechanism is displayed by both rEVs (from resting hPL-BM-

MSCs) and pEVs (from inflammatory-primed hPL-BM-MSCs), even

though their surface epitopes are differentially expressed and their pro-

tein content does not vary significantly. In other words, we focused our

attention only on EV biological effects by assuming that different rEV-

pools from different donors may have the same reproducible immune

regulatory activity, although their protein concentrationmay be different

due to the intrinsic variability of single-donor EVs. To this aim, we chose

some experimental approaches that have been standardized: (i) we

adopted an EV-pooling protocol by isolating rEVs through ultracentrifu-

gation from five donor-hPL-hBM-MSCs cultured in EV-free conditioned

medium, rather than using a fixed protein concentration of single-donor

hBM-MSC-EVs; (ii) we previously assessed that the EVs used for in vitro

and in vivo immunological assays were from hBM-MSCs that were

proved effective in vitro in terms of IEC inhibition and T-reg induction.

Therefore, we eventually chose and characterized hPL-hBM-MSC-EVs,

due to the advantages in terms of MSC expansion yield and safety with

the same immunoregulatory properties; (iii) we developed a very effi-

cient xenogeneic NOG mouse model capable to mimic human severe

aGvHD in a reproducible manner, with the maximum aGvHD clinical

score at days +13/+14, easily measurable by both clinical and

F IGURE 7 Monitoring the effect of EV treatment in vivo. A, Kaplan-Meier survival curves of EV-UT mice (untreated aGvHD mice, n = 6) and
EV-TD mice (aGvHD mice treated with EV-TD, n = 8). Log-rank (Mantel-Cox) test was used for statistical analysis. Data were obtained with three
independent experiments. B, Weight change curves of control mice (PBS-only, n = 1), EV-UT mice (untreated aGvHD mice, n = 8) and EV-TD
mice (aGvHD mice treated with EV-TD, n = 10). Data were compared using Student's unpaired t tests and multiple t tests. Error bars represent
mean ± SEM obtained from five independent experiments. C, Peripheral blood T-reg evaluation was performed after 9 and 12 days from PBMC
inoculation in the aGvHD mouse model. EV-TD mice (n = 3) were treated three times (day +1, +4 and + 7) with EV-TD; EV-UT mice (n = 3)
received only vehicle (PBS). FACS analysis was performed by CD4+CD25+CD127lowFOXP3+ gating on T-cells. Error bars represent mean ± SEM
obtained from three independent experiments. Data were compared using Student's unpaired t tests. D, Quantikine ELISA was performed on
plasma samples at +9 days from PBMC inoculation into aGvHD mouse model (EV-UT and EV-TD, n = 5 each). Error bars represent mean ± SEM
obtained from at least five measurements of independent samples. Data were compared using Student's unpaired t tests. *P < .05, **P < .01.
aGvHD, acute graft-vs-host-disease; EV, extracellular vesicle; EV-TD, EV treated; EV-UT, EV-untreated; PBS, phosphate-buffered saline; PBMCs,
peripheral blood mononuclear cells

DAL COLLO ET AL. 709



histopathological parameters, and the maximum mortality rate between

day +12 and +17.

We then applied the above-mentioned strategy and read-out to

assess in vitro and in vivo the effectiveness of the use of hPL-hBM-

MSC-derived rEV-pools. Thus, we could first quantify reproducibly

the rEV-pool immunomodulatory effect in vitro in terms of EV-IFU.

This was the prerequisite to select only those EV pools mediating the

beneficial effect, regardless of their protein concentration and

according to the results obtained with single donor-derived hPL-hBM-

MSC-EVs showing at least threefold T-reg increase compared with

controls. Consequently, we could establish empirically the EV-TD

corresponding to 10-fold the in vitro EV-IFU, taking into consideration

that many interfering factors following EV administration in vivo may

influence and bias the final clinical effect in patients (drug interactions,

inflammatory status, lymphocytopenia, concomitant infections, etc).

According to this approach, we observed a significant improvement of

both mouse overall survival and aGvHD amelioration in terms of clini-

cal scores. As expected,47 the short follow-up did not allow us to find

significant differences in terms of histopathological score; neverthe-

less, we observed the parallel increase of some biomarkers, such as

circulating T-regs and plasmatic cytokines playing a role in T-reg

induction and EV immunomodulation (TNF-α and IFN-γ).48,55,56

5 | CONCLUSION

In summary, our mouse model of aGvHD suggests that EVs may rep-

resent a safe and valid alternative to whole MSCs for patients with

steroid-refractory aGvHD. The effective dose of EV pools is reproduc-

ibly identified according to EV-IFU and EV-TD definition, with a num-

ber of advantages in terms of patient's safety, availability,

quantification of biological effects, and reproducibility. An administra-

tion schedule based on repeated administration EV-TD and with a

longer follow-up will help to clarify the clinical impact of this experi-

mental approach in aGvHD also in terms of prevention of histopatho-

logical damages and long-term survival.
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