478 research outputs found
Adaptive Spectral Galerkin Methods with Dynamic Marking
The convergence and optimality theory of adaptive Galerkin methods is almost
exclusively based on the D\"orfler marking. This entails a fixed parameter and
leads to a contraction constant bounded below away from zero. For spectral
Galerkin methods this is a severe limitation which affects performance. We
present a dynamic marking strategy that allows for a super-linear relation
between consecutive discretization errors, and show exponential convergence
with linear computational complexity whenever the solution belongs to a Gevrey
approximation class.Comment: 20 page
A saturation property for the spectral-Galerkin approximation of a Dirichlet problem in a square
Both practice and analysis of adaptive -FEMs and -FEMs raise the
question what increment in the current polynomial degree guarantees a
-independent reduction of the Galerkin error. We answer this question for
the -FEM in the simplified context of homogeneous Dirichlet problems for the
Poisson equation in the two dimensional unit square with polynomial data of
degree . We show that an increment proportional to yields a -robust
error reduction and provide computational evidence that a constant increment
does not
On p-Robust Saturation for hp-AFEM
We consider the standard adaptive finite element loop SOLVE, ESTIMATE, MARK,
REFINE, with ESTIMATE being implemented using the -robust equilibrated flux
estimator, and MARK being D\"orfler marking. As a refinement strategy we employ
-refinement. We investigate the question by which amount the local
polynomial degree on any marked patch has to be increase in order to achieve a
-independent error reduction. The resulting adaptive method can be turned
into an instance optimal -adaptive method by the addition of a coarsening
routine
In vivo function of the murid herpesvirus-4 ribonucleotide reductase small subunit
The difficulty of eliminating herpesvirus carriage makes host entry a key target for infection control. However, its viral requirements are poorly defined. Murid herpesvirus-4 (MuHV-4) can potentially provide insights into gammaherpesvirus host entry. Upper respiratory tract infection requires the MuHV-4 thymidine kinase (TK) and ribonucleotide reductase large subunit (RNR-L), suggesting a need for increased nucleotide production. However, both TK and RNR-L are likely to be multifunctional. We therefore tested further the importance of nucleotide production by disrupting the MuHV-4 ribonucleotide reductase small subunit (RNR-S). This caused a similar attenuation to RNR-L disruption: despite reduced intra-host spread, invasive inoculations still established infection, whereas a non-invasive upper respiratory tract inoculation did so only at high dose. Histological analysis showed that RNR-S−, RNR-L− and TK− viruses all infected cells in the olfactory neuroepithelium but unlike wild-type virus then failed to spread. Thus captured host nucleotide metabolism enzymes, up to now defined mainly as important for alphaherpesvirus reactivation in neurons, also have a key role in gammaherpesvirus host entry. This seemed to reflect a requirement for lytic replication to occur in a terminally differentiated cell before a viable pool of latent genomes could be established
Albumin enhanced morphometric image analysis in CLL.
BACKGROUND: The heterogeneity of lymphocytes from patients with chronic lymphocytic leukemia (CLL) and blood film artifacts make morphologic subclassification of this disease difficult.
METHODS: We reviewed paired blood films prepared from ethylene-diamine-tetraacetic acid (ETDA) samples with and without bovine serum albumin (BSA) from 82 CLL patients. Group 1 adhered to NCCLS specifications for the preparations of EDTA blood films. Group 2 consisted of blood films containing EDTA and a 1:12 dilution of 22% BSA. Eight patients were selected for digital photomicroscopy and statistical analysis. Approximately 100 lymphocytes from each slide were digitally captured.
RESULTS: The mean cell area +/- standard error was 127.8 microm(2) +/- 1.42 for (n = 793) for group 1 versus 100.7 microm(2) +/- 1.39 (n = 831) for group 2. The nuclear area was 88.9 microm(2) +/- 0.85 for group 1 versus 76.4 microm(2) +/- 0.83 for group 2. For the nuclear transmittance, the values were 97.6 +/- 0.85 for group 1 and 104.1 +/- 0.83 for group 2. The nuclear:cytoplasmic ratios were 0.71 +/- 0.003 for group 1 and 0.78 +/- 0.003 for group 2. All differences were statistically significant (P \u3c 0.001).
CONCLUSIONS: BSA addition results in the reduction of atypical lymphocytes and a decrease in smudge cells. BSA also decreases the lymphocyte area and nuclear area, whereas nuclear transmittance and nuclear:cytoplasmic ratio are increased. A standardized method of slide preparation would allow accurate interlaboratory comparison. The use of BSA may permit better implementation of the blood film-based subclassification of CLL and lead to a better correlation of morphology with cytogenetics and immunophenotyping. Published 2003 Wiley-Liss, Inc
Blazars in the Fermi Era: The OVRO 40-m Telescope Monitoring Program
The Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope
provides an unprecedented opportunity to study gamma-ray blazars. To capitalize
on this opportunity, beginning in late 2007, about a year before the start of
LAT science operations, we began a large-scale, fast-cadence 15 GHz radio
monitoring program with the 40-m telescope at the Owens Valley Radio
Observatory (OVRO). This program began with the 1158 northern (declination>-20
deg) sources from the Candidate Gamma-ray Blazar Survey (CGRaBS) and now
encompasses over 1500 sources, each observed twice per week with a ~4 mJy
(minimum) and 3% (typical) uncertainty. Here, we describe this monitoring
program and our methods, and present radio light curves from the first two
years (2008 and 2009). As a first application, we combine these data with a
novel measure of light curve variability amplitude, the intrinsic modulation
index, through a likelihood analysis to examine the variability properties of
subpopulations of our sample. We demonstrate that, with high significance
(7-sigma), gamma-ray-loud blazars detected by the LAT during its first 11
months of operation vary with about a factor of two greater amplitude than do
the gamma-ray-quiet blazars in our sample. We also find a significant (3-sigma)
difference between variability amplitude in BL Lacertae objects and
flat-spectrum radio quasars (FSRQs), with the former exhibiting larger
variability amplitudes. Finally, low-redshift (z<1) FSRQs are found to vary
more strongly than high-redshift FSRQs, with 3-sigma significance. These
findings represent an important step toward understanding why some blazars emit
gamma-rays while others, with apparently similar properties, remain silent.Comment: 23 pages, 24 figures. Submitted to ApJ
Keys of a Mission to Uranus or Neptune, the Closest Ice Giants
Uranus and Neptune are the archetypes of "ice giants", a class of planets that may be among the most common in the Galaxy. They are the last unexplored planets of the Solar System, yet they hold the keys to understand the atmospheric dynamics and structure of planets with hydrogen atmospheres inside and outside the solar system
- …