100 research outputs found

    Panchromatic Studies of Distant Clusters of Galaxies

    Full text link
    High redshift (z >~ 1) clusters are ideal probes to study the formation and evolution of large scale structures and galaxies in the universe. A 10-m class ground based telescope, X-ray observatories (Chandra, XMM-Newton) and HST/ACS are allowing us to perform an unprecedented study of distant massive clusters of galaxies in the redshift range 0.84<z<1.3, selected from X-rays surveys. In this paper we summarize our results on the structure and dynamics of two of these clusters derived from imaging and spectroscopic data as well as our results on the evolution of early-type galaxies.Comment: 14 pages, 2 figures. Accepted for publication in Modern Physics Letters A (invited brief review). v2: Order of authors in the .tex version corrected to match that in journa

    Spectroscopic Confirmation of a Massive Red-Sequence-Selected Galaxy Cluster at z = 1.34 in the SpARCS-South Cluster Survey

    Get PDF
    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a z'-passband imaging survey, consisting of deep (z' ~ 24 AB) observations made from both hemispheres using the CFHT 3.6m and CTIO 4m telescopes. The survey was designed with the primary aim of detecting galaxy clusters at z >~ 1. In tandem with pre-existing 3.6um observations from the Spitzer Space Telescope SWIRE Legacy Survey, SpARCS detects clusters using an infrared adaptation of the two-filter red-sequence cluster technique. The total effective area of the SpARCS cluster survey is 41.9 deg^2. In this paper, we provide an overview of the 13.6 deg^2 Southern CTIO/MOSAICII observations. The 28.3 deg^2 Northern CFHT/MegaCam observations are summarized in a companion paper by Muzzin et al. (2008). In this paper, we also report spectroscopic confirmation of SpARCS J003550-431224, a very rich galaxy cluster at z = 1.335, discovered in the ELAIS-S1 field. To date, this is the highest spectroscopically confirmed redshift for a galaxy cluster discovered using the red-sequence technique. Based on nine confirmed members, SpARCS J003550-431224 has a preliminary velocity dispersion of 1050 +/- 230 km/s. With its proven capability for efficient cluster detection, SpARCS is a demonstration that we have entered an era of large, homogeneously-selected z > 1 cluster surveys.Comment: 10 pages, 6 Figures, Submitted to the Ap

    Spectroscopic Confirmation of Two Massive Red-Sequence-Selected Galaxy Clusters at z ~ 1.2 in the SpARCS-North Cluster Survey

    Get PDF
    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a deep z'-band imaging survey covering the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) Legacy fields designed to create the first large homogeneously selected sample of massive clusters at z > 1 using an infrared adaptation of the cluster red-sequence method. We present an overview of the northern component of the survey which has been observed with Canada-France-Hawaii Telescope (CFHT)/MegaCam and covers 28.3 deg^2. The southern component of the survey was observed with Cerro Tololo Inter-American Observatory (CTIO)/MOSAICII, covers 13.6 deg^2, and is summarized in a companion paper by Wilson et al. We also present spectroscopic confirmation of two rich cluster candidates at z ~ 1.2. Based on Nod-and-Shuffle spectroscopy from GMOS-N on Gemini, there are 17 and 28 confirmed cluster members in SpARCS J163435+402151 and SpARCS J163852+403843 which have spectroscopic redshifts of 1.1798 and 1.1963, respectively. The clusters have velocity dispersions of 490 ± 140 km s^(–1) and 650 ± 160 km s^(–1), respectively, which imply masses (M_(200)) of (1.0 ± 0.9) × 10^(14) M_⊙ and (2.4 ± 1.8) × 10^(14) M_⊙. Confirmation of these candidates as bonafide massive clusters demonstrates that two-filter imaging is an effective, yet observationally efficient, method for selecting clusters at z > 1

    Discovery of a Rich Cluster at z = 1.63 Using the Rest-frame 1.6 μm "Stellar Bump Sequence" Method

    Get PDF
    We present a new two-color algorithm, the "Stellar Bump Sequence" (SBS), that is optimized for robustly identifying candidate high-redshift galaxy clusters in combined wide-field optical and mid-infrared (MIR) data. The SBS algorithm is a fusion of the well-tested cluster red-sequence method of Gladders & Yee with the MIR 3.6 μm-4.5 μm cluster detection method developed by Papovich. As with the cluster red-sequence method, the SBS identifies candidate overdensities within 3.6 μm-4.5 μm color slices, which are the equivalent of a rest-frame 1.6 μm stellar bump "red-sequence." In addition to employing the MIR colors of galaxies, the SBS algorithm incorporates an optical/MIR (z'-3.6 μm) color cut. This cut effectively eliminates foreground 0.2 1.0 galaxies and add noise when searching for high-redshift galaxy overdensities. We demonstrate using the z ~ 1 GCLASS cluster sample that similar to the red sequence, the stellar bump sequence appears to be a ubiquitous feature of high-redshift clusters, and that within that sample the color of the stellar bump sequence increases monotonically with redshift and provides photometric redshifts accurate to Δz = 0.05. We apply the SBS method in the XMM-LSS SWIRE field and show that it robustly recovers the majority of confirmed optical, MIR, and X-ray-selected clusters at z > 1.0 in that field. Lastly, we present confirmation of SpARCS J022427-032354 at z = 1.63, a new cluster detected with the method and confirmed with 12 high-confidence spectroscopic redshifts obtained using FORS2 on the Very Large Telescope. We conclude with a discussion of future prospects for using the algorithm

    Spectroscopic Confirmation of Three Red-sequence Selected Galaxy Clusters at z = 0.87, 1.16, and 1.21 from the SpARCS Survey

    Get PDF
    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a z'-passband imaging survey of the 50 deg^2 Spitzer SWIRE Legacy fields, designed with the primary aim of creating the first large, homogeneously selected sample of massive clusters at z > 1. SpARCS uses an infrared adaptation of the two-filter cluster red-sequence technique. In this paper, we report Keck/LRIS spectroscopic confirmation of two new exceptionally rich galaxy clusters, SpARCS J161315+564930 at z = 0.871 ± 0.002, with 14 high-confidence members and a rest-frame velocity dispersion of σ_v = 1230 ± 320 km s^(–1), and SpARCS J161641+554513 at z = 1.161 ± 0.003, with seven high-confidence members (including one active galactic nucleus) and a rest-frame velocity dispersion of σ_v = 950 ± 330 km s^(–1). We also report confirmation of a third new system, SpARCS J161037+552417 at z = 1.210 ± 0.002, with seven high-confidence members and a rest-frame velocity dispersion of σ v = 410 ± 300 km s^(–1). These three new spectroscopically confirmed clusters further demonstrate the efficiency and effectiveness of two-filter imaging for detecting bona fide galaxy clusters at high redshift. We conclude by demonstrating that prospects are good for the current generation of surveys aiming to estimate cluster redshifts and masses at z ≳ 1 directly from optical-infrared imaging

    Distance to the RR Lyrae Star V716 Monocerotis

    Full text link
    We present high quality BVRI CCD photometry of the variable star V716 Monocerotis (= NSV 03775). We confirm it to be an RR Lyrae star of variability type ab (i.e. a fundamental mode pulsator), and determine its metallicity ([Fe/H] = -1.33 +/- 0.25), luminosity (Mv = 0.80 +/- 0.06), and foreground reddening (E(B-V) = 0.05-0.17) from the Fourier components of its light curve. These parameters indicate a distance of 4.1 +/- 0.3 kpc, placing V716 Mon near the plane of the Galaxy well outside the solar circle. This research was conducted as part of the 1999 Research Experiences for Undergraduates (REU) and Practicas de Investigacion en Astronomia (PIA) Programs at Cerro Tololo Inter-American Observatory (CTIO).Comment: 9 pages including 2 figures and 2 tables; accepted by PAS

    When the Well Runs Dry: Modeling Environmental Quenching of High-mass Satellites in Massive Clusters at \boldmathz1z \gtrsim 1

    Full text link
    We explore models of massive (>1010 M\gt 10^{10}~{\rm M}_{\odot}) satellite quenching in massive clusters at z1z\gtrsim1 using an MCMC framework, focusing on two primary parameters: RquenchR_{\rm quench} (the host-centric radius at which quenching begins) and τquench\tau_{\rm quench} (the timescale upon which a satellite quenches after crossing RquenchR_{\rm quench}). Our MCMC analysis shows two local maxima in the 1D posterior probability distribution of RquenchR_{\rm quench} at approximately 0.250.25 and 1.0 R2001.0~R_{\rm{200}}. Analyzing four distinct solutions in the τquench\tau_{\rm quench}-RquenchR_{\rm quench} parameter space, nearly all of which yield quiescent fractions consistent with observational data from the GOGREEN survey, we investigate whether these solutions represent distinct quenching pathways and find that they can be separated between \textquote{starvation} and \textquote{core quenching} scenarios. The starvation pathway is characterized by quenching timescales that are roughly consistent with the total cold gas (H2_{2}+H{\scriptsize I}) depletion timescale at intermediate zz, while core quenching is characterized by satellites with relatively high line-of-sight velocities that quench on short timescales (0.25\sim 0.25 Gyr) after reaching the inner region of the cluster (<0.30 R200\lt 0.30~R_{\rm{200}}). Lastly, we break the degeneracy between these solutions by comparing the observed properties of transition galaxies from the GOGREEN survey. We conclude that only the \textquote{starvation} pathway is consistent with the projected phase-space distribution and relative abundance of transition galaxies at z1z \sim 1. However, we acknowledge that ram pressure might contribute as a secondary quenching mechanism.Comment: 15 pages; 8 figures; Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    The Gemini Cluster Astrophysics Spectroscopic Survey (GCLASS): The Role of Environment and Self-Regulation in Galaxy Evolution at z ~ 1

    Get PDF
    We evaluate the effects of environment and stellar mass on galaxy properties at 0.85 < z < 1.20 using a 3.6um-selected spectroscopic sample of 797 cluster and field galaxies drawn from the GCLASS survey. We confirm that for galaxies with LogM* > 9.3 the well-known correlations between environment and properties such as star-forming fraction (f_SF), SFR, SSFR, D(4000), and color are already in place at z ~ 1. We separate the effects of environment and stellar mass on galaxies by comparing the properties of star-forming and quiescent galaxies at fixed environment, and fixed stellar mass. The SSFR of star-forming galaxies at fixed environment is correlated with stellar mass; however, at fixed stellar mass it is independent of environment. The same trend exists for the D(4000) measures of both the star-forming and quiescent galaxies and shows that their properties are determined primarily by their stellar mass, not by their environment. Instead, it appears that environment's primary role is to control the fraction of star-forming galaxies. Using the spectra we identify candidate poststarburst galaxies and find that those with 9.3 < LogM* < 10.7 are 3.1 +/- 1.1 times more common in high-density regions compared to low-density regions. The clear association of poststarbursts with high-density regions as well as the lack of a correlation between the SSFRs and D(4000)s of star-forming galaxies with their environment suggests that at z ~ 1 the environmental-quenching timescale must be rapid. Lastly, we construct a simple quenching model which demonstrates that the lack of a correlation between the D(4000) of quiescent galaxies and their environment results naturally if self quenching dominates over environmental quenching at z > 1, or if the evolution of the self-quenching rate mirrors the evolution of the environmental-quenching rate at z > 1, regardless of which dominates.Comment: 26 pages, 15 figures, accepted for publication in Ap

    Hα star formation main sequence in cluster and field galaxies at z ∼ 1.6

    Get PDF
    We calculate Hα-based star formation rates and determine the star formation rate–stellar mass relation for members of three Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS) clusters at z ∼ 1.6 and serendipitously identified field galaxies at similar redshifts to the clusters. We find similar star formation rates in cluster and field galaxies throughout our range of stellar masses. The results are comparable to those seen in other clusters at similar redshifts, and consistent with our previous photometric evidence for little quenching activity in clusters. One possible explanation for our results is that galaxies in our z ∼ 1.6 clusters have been accreted too recently to show signs of environmental quenching. It is also possible that the clusters are not yet dynamically mature enough to produce important environmental quenching effects shown to be important at low redshift, such as ram-pressure stripping or harassment
    corecore