83 research outputs found

    Photon energy lifter

    Full text link
    We propose a time-dependent photonic structure, in which the carrier frequency of an optical pulse is shifted without changing its shape. The efficiency of the device takes advantage of slow group velocities of light attainable in periodic photonic structures. The frequency shifting effect is quantitatively studied by means of Finite Difference Time Domain simulations for realistic systems with optical parameters of conventional silicon technology.Comment: 4 pages 5 figure

    Band gap characterization and slow light effects in one dimensional photonic crystals based on silicon slot-waveguides.

    Get PDF
    We investigate the photonic properties of one dimensional photonic crystals realized on Silicon On Insulator channel slot-waveguide to engineer slow light effects. Various geometries of the photonic pattern have been characterized and their photonic band-gap structure analyzed. The optimal geometry has been further used to realize a coupled resonator optical waveguide (CROW). A first optimization of these CROW devices shows a group velocity of more than c/10 at 1.55 mum. Full three dimensional calculations based on the planar wave expansion method have been used to compute the band diagram while full three dimensional calculations based on finite difference time domain methods have been used to study light propagation

    Engineering the mode parity of the ground state in photonic crystal molecules

    Get PDF
    We propose a way to engineer the design of photonic molecules, realized by coupling two photonic crystal cavities, that allows an accurate control of the parity of their ground states. The spatial distribution of the fundamental mode of photonic molecules can be tuned from a bonding to an antibonding character by a local and continuous modification of the dielectric environment in between the two coupled cavities. In the systems that we investigate the transition could be experimentally accomplished by post-fabrication methods in either a reversible or an irreversible way. We notably find that the mode parity exchange is tightly related to a dramatic variation of the far field emission pattern, leading to the possibility to exploit these systems and techniques for future applications in optoelectronics

    Spatial steadiness of individual disorder modes upon controlled spectral tuning

    Get PDF
    Recent innovative applications in disordered photonics would strongly benefit from the possibility to achieve spectral tuning of the individual disorder localized photonic modes without affecting their spatial distributions. Here, we design and fabricate a two-dimensional disordered photonic system, made of a GaAs slab patterned with randomly distributed circular air scattering centers, supporting localized light modes with very small modal volume. The photoluminescence of InAs quantum dots embedded in the slab is used as a probe for near field experiments and gives direct access to the electric field intensity distribution of the localized random modes. We demonstrate that laser assisted oxidation of the GaAs slab performed by near field illumination can be used for a gentle tuning of the individual random modes without modifying the subtle balance leading to light localization given by multiple scattering

    Near-field speckle imaging of light localization in disordered photonic

    Get PDF
    Optical localization in strongly disordered photonic media is an attractive topic for proposing novel cavity-like structures. Light interference can produce random modes confined within small volumes, whose spatial distribution in the near-field is predicted to show hot spots at the nanoscale. However, these near-field speckles have not yet been experimentally investigated due to the lack of a high spatial resolution imaging techniques. Here, we study a system where the disorder is induced by random drilling air holes in a GaAs suspended membrane with internal InAs quantum dots. We perform deep-subwavelength near-field experiments in the telecom window to directly image the spatial distribution of the electric field intensity of disordered-induced localized optical modes. We retrieve the near-field speckle patterns that extend over few micrometers and show several single speckles of the order of λ/10 size. The results are compared with the numerical calculations and with the recent findings in the literature of disordered media. Notably, the hot spots of random modes are found in proximity of the air holes of the disordered system

    Quantifying the Sensitivity and Unclonability of Optical Physical Unclonable Functions

    Get PDF
    Due to their unmatched entropy, complexity, and security level, optical physical unclonable functions (PUFs) currently receive a lot of interest in the literature.Despite the large body of existing works, herein, one of their core features in detail is studied, namely, their physical unclonability. This article tackles this fundamental and yet largely unaddressed issue. In simulations and/or experiments, the sensitivity of diffraction-based optical responses is investigated with respect to various small alterations such as variation in position, size, and number of the scatterers, as well as perturbations in the spatial alignment between the PUF and the measurement apparatus. The analysis focuses on 2Doptical PUFs because of their relevance in integrated applications and the need to reply to security concerns that can be raised when the physical structure of the geometry is accessible. Among the results of this study, the sensitivity analysis shows that a positional perturbation of scatterers on the order of 30 nm, that is,far below the wavelength of the probing laser light of 632 nm wavelength, is sufficient to invalidate the PUF response and thus detect forgery attempt. These results support and quantify the high adversarial efforts required to clone optical PUFs, even for 2D layouts

    Three-Dimensional Photonic Circuits in Rigid and Soft Polymers Tunable by Light

    Get PDF
    partially_open6Polymeric matrices offer a wide and powerful platform for integrated photonics, complementary to the well established silicon photonics technology. The possibility to integrate, on the same chip, different customized materials allows for many functionalities, like the ability to dynamically control the spectral properties of single optical components. Within this context, this Article reports on the fabrication and optical characterization of integrated photonic circuits for the telecom C-band, made of a combination of both rigid and tunable elastic polymers. By using a 3D photolithographic technique (direct laser writing), in a single-step process, every building block of the polymeric circuit is fabricated: straight and bent waveguides, grating couplers, and single and vertically coupled whispering gallery mode resonators designed in planar and vertical geometries. Using this platform, a new type of operation was introduced through true three-dimensional integration of tunable photonic components, made by liquid crystalline networks that can be actuated and controlled by a remote and non-invasive light stimulus. Depending on the architecture, it is possible to integrate them as elastic actuators or as constituents of the photonic cavity itself. The two strategies then exploit the optical induced deformation and variation of its refractive index, inducing a net red or blue shift of the cavity resonances, respectively. This work paves the way for light-tunable optical networks that combine different photonic components, made by glassy or shape-changing materials, in order to implement further photonic circuit requirements.openSara Nocentini; Francesco Riboli; Matteo Burresi; Daniele Martella; Camilla Parmeggiani; Diederik S. WiersmaNocentini, Sara; Riboli, Francesco; Burresi, Matteo; Martella, Daniele; Parmeggiani, Camilla; Wiersma, Diederik S

    Topology of the ground state of two interacting Bose-Einstein condensates

    Full text link
    We investigate the spatial patterns of the ground state of two interacting Bose-Einstein condensates. We consider the general case of two different atomic species (with different mass and in different hyperfine states) trapped in a magnetic potential whose eigenaxes can be tilted with respect to the vertical direction, giving rise to a non trivial gravitational sag. Despite the complicated geometry, we show that within the Thomas-Fermi approximations and upon appropriate coordinate transformations, the equations for the density distributions can be put in a very simple form. Starting from this expressions we give explicit rules to classify the different spatial topologies which can be produced, and we discuss how the behavior of the system is influenced by the inter-atomic scattering length. We also compare explicit examples with the full numeric Gross-Pitaevskii calculation.Comment: RevTex4, 8 pages, 7 figure

    Photon Management in Two-Dimensional Disordered Media

    Full text link
    Elaborating reliable and versatile strategies for efficient light coupling between free space and thin films is of crucial importance for new technologies in energy efficiency. Nanostructured materials have opened unprecedented opportunities for light management, notably in thin-film solar cells. Efficient coherent light trapping has been accomplished through the careful design of plasmonic nanoparticles and gratings, resonant dielectric particles and photonic crystals. Alternative approaches have used randomly-textured surfaces as strong light diffusers to benefit from their broadband and wide-angle properties. Here, we propose a new strategy for photon management in thin films that combines both advantages of an efficient trapping due to coherent optical effects and broadband/wide-angle properties due to disorder. Our approach consists in the excitation of electromagnetic modes formed by multiple light scattering and wave interference in two-dimensional random media. We show, by numerical calculations, that the spectral and angular responses of thin films containing disordered photonic patterns are intimately related to the in-plane light transport process and can be tuned through structural correlations. Our findings, which are applicable to all waves, are particularly suited for improving the absorption efficiency of thin-film solar cells and can provide a novel approach for high-extraction efficiency light-emitting diodes
    corecore