14 research outputs found

    Galaxy shape measurement with convolutional neural networks

    Get PDF
    We present our results from training and evaluating a convolutional neural network (CNN) to predict galaxy shapes from wide-field survey images of the first data release of the Dark Energy Survey (DES DR1). We use conventional shape measurements as ground truth from an overlapping, deeper survey with less sky coverage, the Canada-France Hawaii Telescope Lensing Survey (CFHTLenS). We demonstrate that CNN predictions from single band DES images reproduce the results of CFHTLenS at bright magnitudes and show higher correlation with CFHTLenS at fainter magnitudes than maximum likelihood model fitting estimates in the DES Y1 im3shape catalogue. Prediction of shape parameters with a CNN is also extremely fast, it takes only 0.2 milliseconds per galaxy, improving more than 4 orders of magnitudes over forward model fitting. The CNN can also accurately predict shapes when using multiple images of the same galaxy, even in different color bands, with no additional computational overhead. The CNN is again more precise for faint objects, and the advantage of the CNN is more pronounced for blue galaxies than red ones when compared to the DES Y1 metacalibration catalogue, which fits a single Gaussian profile using riz band images. We demonstrate that CNN shape predictions within the metacalibration self-calibrating framework yield shear estimates with negligible multiplicative bias, m<103 m < 10^{-3}, and no significant PSF leakage. Our proposed setup is applicable to current and next generation weak lensing surveys where higher quality ground truth shapes can be measured in dedicated deep fields

    An improved cosmological parameter inference scheme motivated by deep learning

    Get PDF
    Dark matter cannot be observed directly, but its weak gravitational lensing slightly distorts the apparent shapes of background galaxies, making weak lensing one of the most promising probes of cosmology. Several observational studies have measured the effect, and there are currently running, and planned efforts to provide even larger, and higher resolution weak lensing maps. Due to nonlinearities on small scales, the traditional analysis with two-point statistics does not fully capture all the underlying information. Multiple inference methods were proposed to extract more details based on higher order statistics, peak statistics, Minkowski functionals and recently convolutional neural networks (CNN). Here we present an improved convolutional neural network that gives significantly better estimates of Ωm\Omega_m and σ8\sigma_8 cosmological parameters from simulated convergence maps than the state of art methods and also is free of systematic bias. We show that the network exploits information in the gradients around peaks, and with this insight, we construct a new, easy-to-understand, and robust peak counting algorithm based on the 'steepness' of peaks, instead of their heights. The proposed scheme is even more accurate than the neural network on high-resolution noiseless maps. With shape noise and lower resolution its relative advantage deteriorates, but it remains more accurate than peak counting

    Galaxy shape measurement with convolutional neural networks

    Get PDF

    Weak lensing cosmology with convolutional neural networks on noisy data

    Get PDF
    Weak gravitational lensing is one of the most promising cosmological probes of the late universe. Several large ongoing (DES, KiDS, HSC) and planned (LSST, EUCLID, WFIRST) astronomical surveys attempt to collect even deeper and larger scale data on weak lensing. Due to gravitational collapse, the distribution of dark matter is non-Gaussian on small scales. However, observations are typically evaluated through the two-point correlation function of galaxy shear, which does not capture non-Gaussian features of the lensing maps. Previous studies attempted to extract non-Gaussian information from weak lensing observations through several higher-order statistics such as the three-point correlation function, peak counts or Minkowski-functionals. Deep convolutional neural networks (CNN) emerged in the field of computer vision with tremendous success, and they offer a new and very promising framework to extract information from 2 or 3-dimensional astronomical data sets, confirmed by recent studies on weak lensing. We show that a CNN is able to yield significantly stricter constraints of (σ8,Ωm\sigma_8, \Omega_m) cosmological parameters than the power spectrum using convergence maps generated by full N-body simulations and ray-tracing, at angular scales and shape noise levels relevant for future observations. In a scenario mimicking LSST or Euclid, the CNN yields 2.4-2.8 times smaller credible contours than the power spectrum, and 3.5-4.2 times smaller at noise levels corresponding to a deep space survey such as WFIRST. We also show that at shape noise levels achievable in future space surveys the CNN yields 1.4-2.1 times smaller contours than peak counts, a higher-order statistic capable of extracting non-Gaussian information from weak lensing maps

    An improved cosmological parameter inference scheme motivated by deep learning

    Get PDF
    Dark matter cannot be observed directly, but its weak gravitational lensing slightly distorts the apparent shapes of background galaxies, making weak lensing one of the most promising probes of cosmology. Several observational studies have measured the effect, and there are currently running(1,2) and planned efforts(3,4) to provide even larger and higher-resolution weak lensing maps. Owing to nonlinearities on small scales, the traditional analysis with two-point statistics does not fully capture all of the underlying informations(5). Multiple inference methods have been proposed to extract more details based on higher-order statistics(6,7), peak statisticss(8-13), Minkowski functionals(14-16) and recently convolutional neural networks(17,18). Here we present an improved convolutional neural network that gives significantly better estimates of the Omega(m) and sigma(8) cosmological parameters from simulated weak lensing convergence maps than state-of-art methods and that is also free of systematic bias. We show that the network exploits information in the gradients around peaks, and with this insight we have constructed an easy-to-understand and robust peak-counting algorithm based on the steepness of peaks, instead of their heights. The proposed scheme is even more accurate than the neural network on high-resolution noiseless maps. With shape noise and lower resolution, its relative advantage deteriorates, but it remains more accurate than peak counting

    A számítógépes mélytanulási technológia várható megjelenése a hazai mammográfiában = Potential applications of deep learning-based technologies in Hungarian mammography

    Get PDF
    Absztrakt: Bevezetés és célkitűzés: A számítógépes ’mélytanulás’ (deep learning) az elmúlt két évtized számítástechnikai fejlődésének legjelentősebb ajándéka. A számítógépes mélytanulásban rejlő – egyelőre még beláthatatlan – lehetőségek megértése, befogadása és alkalmazása a medicina megkerülhetetlen feladata. Módszer: Ajándék és feladat, hiszen az exponenciálisan növekvő adatok (képalkotó vizsgálati, laboratóriumi, terápiaválasztási lehetőségek, terápia-kölcsönhatások stb.) „bitjeinek” tengerében minden vágyunk és deklarációnk ellenére mind kevésbé tudjuk a személyre és állapotra, a tumorra és környezetére szabott individuális ellátást megvalósítani. Eredmények: A jelen pillanatban felelős ellátóként – és nem kevésbé felelős finanszírozóként – azt élhetjük meg, hogy egyéni és közösségi szinten is szuboptimális folyamatokat tartunk fenn, aminek oka egyszerre az adatok bősége, ugyanakkor az ellátáshoz individuálisan fontos adatok hiánya. A számítógépes mélytanulás, a medicina lényegét adó ember–ember közti találkozás gyógyító erejét nem csorbítva – hanem inkább kiterjesztve –, ebben kínál fényt az alagútban. Következtetés: Belátva tehát saját adatintegrációs és ismereti korlátainkat, nekünk, orvosoknak és ellátásfinanszírozóknak – sajátos előítéleteinket és félelmeinket feladva – kell megtanulni a számítógépes mélytanulásban rejlő különleges lehetőségeket, melyek nemcsak a képalkotó diagnosztikában, hanem már napi realitásként a terápia területén is használhatók (immunterápia). A közlemény ehhez igyekszik kedvet csinálni. Orv Hetil. 2019; 160(4): 138–143. | Abstract: Introduction and aim: The technology, named ‘deep learning’ is the promising result of the last two decades of development in computer science. It poses an unavoidable challenge for medicine, how to understand, apply and adopt the – today not fully explored – possibilities that have become available by these new methods. Method: It is a gift and a mission, since the exponentially growing volume of raw data (from imaging, laboratory, therapy diagnostics or therapy interactions, etc.) did not solve until now our wished and aimed goal to treat patients according to their personal status and setting or specific to their tumor and disease. Results: Currently, as a responsible health care provider and financier, we face the problem of supporting suboptimal procedures and protocols either at individual or at community level. The problem roots in the overwhelming amount of data and, at the same time, the lack of targeted information for treatment. We expect from the deep learning technology an aid which helps to reinforce and extend the human–human cooperations in patient–doctor visits. We expect that computers take over the tedious work allowing to revive the core of healing medicine: the insightful meeting and discussion between patients and medical experts. Conclusion: We should learn the revelational possibilities of deep learning techniques that can help to overcome our recognized finite capacities in data processing and integration. If we, doctors and health care providers or decision makers, are able to abandon our fears and prejudices, then we can utilize this new tool not only in imaging diagnostics but also for daily therapies (e.g., immune therapy). The paper aims to make a great mind to do this. Orv Hetil. 2019; 160(4): 138–143

    aiMotive Dataset: A Multimodal Dataset for Robust Autonomous Driving with Long-Range Perception

    Full text link
    Autonomous driving is a popular research area within the computer vision research community. Since autonomous vehicles are highly safety-critical, ensuring robustness is essential for real-world deployment. While several public multimodal datasets are accessible, they mainly comprise two sensor modalities (camera, LiDAR) which are not well suited for adverse weather. In addition, they lack far-range annotations, making it harder to train neural networks that are the base of a highway assistant function of an autonomous vehicle. Therefore, we introduce a multimodal dataset for robust autonomous driving with long-range perception. The dataset consists of 176 scenes with synchronized and calibrated LiDAR, camera, and radar sensors covering a 360-degree field of view. The collected data was captured in highway, urban, and suburban areas during daytime, night, and rain and is annotated with 3D bounding boxes with consistent identifiers across frames. Furthermore, we trained unimodal and multimodal baseline models for 3D object detection. Data are available at \url{https://github.com/aimotive/aimotive_dataset}.Comment: The paper was accepted to ICLR 2023 Workshop Scene Representations for Autonomous Drivin

    Loss of BRCA1 or BRCA2 markedly increases the rate of base substitution mutagenesis and has distinct effects on genomic deletions

    Get PDF
    Loss-of-function mutations in the BRCA1 and BRCA2 genes increase the risk of cancer. Owing to their function in homologous recombination repair, much research has focused on the unstable genomic phenotype of BRCA1/2 mutant cells manifest mainly as large-scale rearrangements. We used whole-genome sequencing of multiple isogenic chicken DT40 cell clones to precisely determine the consequences of BRCA1/2 loss on all types of genomic mutagenesis. Spontaneous base substitution mutation rates increased sevenfold upon the disruption of either BRCA1 or BRCA2, and the arising mutation spectra showed strong and specific correlation with a mutation signature associated with BRCA1/2 mutant tumours. To model endogenous alkylating damage, we determined the mutation spectrum caused by methyl methanesulfonate (MMS), and showed that MMS also induces more base substitution mutations in BRCA1/2-deficient cells. Spontaneously arising and MMS-induced insertion/deletion mutations and large rearrangements were also more common in BRCA1/2 mutant cells compared with the wild-type control. A difference in the short deletion phenotypes of BRCA1 and BRCA2 suggested distinct roles for the two proteins in the processing of DNA lesions, as BRCA2 mutants contained more short deletions, with a wider size distribution, which frequently showed microhomology near the breakpoints resembling repair by non-homologous end joining. An increased and prolonged gamma-H2AX signal in MMS-treated BRCA1/2 cells suggested an aberrant processing of stalled replication forks as the cause of increased mutagenesis. The high rate of base substitution mutagenesis demonstrated by our experiments is likely to significantly contribute to the oncogenic effect of the inactivation of BRCA1 or BRCA2.Oncogene advance online publication, 25 July 2016; doi:10.1038/onc.2016.243. © 2016 The Author(s
    corecore