


and post-mortem sequencing of metastases can elucidate what

further genomic changes take place during metastasis forma-

tion.5,6 However, multiregion whole genome sequencing

(WGS) studies, which provide the broadest and most reliable

view on somatic mutagenesis and gene copy number

changes,7,8 have not been performed in lung cancer. Even with

available WGS data, it is difficult to obtain timing information

for the evolutionary steps from contemporaneous samples. In

the current study we reasoned that if treatments leave recogni-

sable marks on the genome, the treatment-related mutations

could provide extra information for the timing of evolutionary

branchpoints and metastasis formation.

We have recently demonstrated the mutagenicity of the

cytotoxic agents cisplatin and cyclophosphamide in cell line-

based studies,9 and an experimentally derived cisplatin muta-

tion spectrum was subsequently found in cisplatin-treated

esophageal and liver tumours.10 If certain somatic mutations

in tumour samples can be assigned to a treatment agent that

the patient received, then the branching time of two samples

can be determined relative to the time of the treatment based

on whether the treatment-derived mutations in two samples

are unique or shared. Accurate mutation detection is critical

for such analyses, confounded by varying tumour content and

the varying allele frequency (AF) of subclonal mutations,

necessitating a careful bioinformatics approach.

Treatments may also select for known, identifiable resistance-

causing mutations,11 whose appearance can help understanding

evolutionary paths.

In order to study the evolution of lung adenocarcinoma, we

performed whole genome sequencing on the primary tumour

and multiple metastases of a young non-smoker patient with

EGFR mutant cancer. In addition to kinase activating muta-

tions, EGFR may also be subjected to genomic amplification.

Treatment with tyrosine kinase inhibitors almost invariably

leads to resistance, in about half the cases through the acquisi-

tion of an EGFR T790M mutation.12,13 We were able to detect

ongoing EGFR amplification following the acquisition of gefiti-

nib resistance through T790M mutation, and importantly also

showed that mutations caused by cisplatin treatment can be

used to time the formation of metastases. The demonstrated

analysis pipeline allows the drawing of tumour evolutionary

paths, which in this case distinguish metastases formed before

and after the cisplatin treatment, and also show the progress of

cells through the same lymph node to distinct distant metastases.

Materials and Methods

DNA isolation

Written informed consent was obtained from the patient to per-

form genomic analyses of the tumour and peripheral blood sam-

ples. Permissions to use the archived tissue have been obtained

from the Regional Ethical Committee (No: 510/2013, 86/2015).

Peripheral blood taken during routine diagnostic tests was

collected and frozen. Primary tumour and metastasis samples

were collected and frozen during autopsy. The formalin-fixed

paraffin embedded bronchoscopy biopsy sample of the primary

tumour was also used in this study. Genomic DNAs were

extracted with the High Pure PCR Template Preparation Kit

(Roche) according to the manufacturer’s recommendations.

DNA sequencing

One hundred and fifty basepairs paired end whole genome

DNA sequencing to a mean coverage of 60× (peripheral

blood) or 61×-86× (tumour samples) was performed on Illu-

mina HiSeq X Ten instruments at Edinburgh Genomics

(Edinburgh, UK). For detailed coverage information, see Sup-

porting Information Methods.

Somatic mutation calling

Alignment of the sequencing reads to the reference genome

GRCh38/hg38 was performed with the Burrows-Wheeler align-

ment algorithm,14 followed by post-processing with the IndelRea-

ligner tool of the Genome analysis Toolkit (GATK, version 3.4).15

Somatic mutations, insertions and deletions were obtained

using the GATK MuTect2 mutation caller.16 The merged list

of mutation positions identified by MuTect2 from all samples

was used to detect subclonal mutations. This was done by

extracting the AFs directly from the binary alignment (BAM)

files. The supplemented data set was subjected to carefully opti-

mised post-filtering (see Supporting Information Methods). In

the final filter, one mutation-containing read was allowed in the

control blood sample to allow for index switching noise.17 For

the tumour samples, 0 or at least 3 mutation containing reads

were allowed, considering the positions with 1 or 2 mutated

reads as potential noise.

Germline and somatic DNA analysis

GATK HaplotypeCaller was used to detect all germline varia-

tions in the genome. The determined polymorphisms were ana-

lysed and annotated with InterVar.18 Mutations classified as

‘likely pathogenic’ or ‘pathogenic’ were considered. The somatic

What’s new?

Cancer treatment induces mutations either through direct DNA damage or through the evolutionary selection of resistance

mutations. The authors exploited this effect to study temporal tumor phylogeny and the formation of metastases. Using whole-

genome sequences isolated from a patient with lung adenocarcinoma, they identify metastases that arose before or after onset

of treatment with platinum and tyrosine kinase inhibitors, underscoring that metastases develop and need to be treated much

earlier than they become clinically apparent.
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mutations determined by MuTect2 and the post-processing

were also annotated with InterVar.

Structural variations

Structural variants were determined by the CREST algo-

rithm.19 Post-filtering was performed with the condition of

minimum 3 reads at both the left and right clipped chromo-

some. Chromosome translocations were visualised with the

circlize R package.20

Estimation of tumour content and EGFR allele numbers

Tumour content of the samples was estimated based on the

heterozygous polymorphisms (SNPs) in the TP53 gene, located

in a region with loss of heterozygosity and normal coverage.

AFs at these SNPs were used to determine tumour content

with high precision as an average of the estimated tumour con-

tent in each of these positions.

The genomic region around the EGFR gene presented an

increased coverage in the tumour samples because of amplifi-

cation. To determine the number of alleles containing the

exon 19 deletion (e19del) mutation we used the AF at this

site, corrected with the deletion-related drop in coverage and

the tumour content determined from TP53 polymorphisms.

The possibility of the amplification of WT allele in tumour

cells was rejected based on estimations from the nearby poly-

morphisms. Based on the tumour content and EGFR e19del

alleles the number of alleles simultaneously containing the

T790M mutation could be estimated in a similar manner (see

Supporting Information Methods for more details).

Decomposition of mutational spectra

The sequence context of the preceding and following base was

determined for each mutation. The resulting triplet SNV spec-

tra, were analysed for contributions of known mutational sig-

natures in the COSMIC cancer mutation database.21 The

deconstructSigs R package22 was applied using a restricted set

of COSMIC signatures that included ageing and tissue-specific

cancer signatures1,2,4–6,12,13,15–17,23 supplemented with the sig-

nature drawn from cisplatin-treated human cell lines,10 and

with a minimum signature contribution of 6%.

Analysis of TCGA data

WGS BAM files of treatment naïve lung cancer cases were

downloaded from The Cancer Genome Atlas (TCGA).

Somatic mutations were called by MuTect2 and were used to

construct the 96 category-based triplet SNV spectra. These

were deconstructed using COSMIC and cisplatin signatures as

described above.

Model drawing

The qualitative model of tumour evolution was built using

figures constructed with the fishplot R package.23

Data access

Binary alignment map (BAM) files of the primary tumour, the

bone, liver, lymph node metastases, and the peripheral blood

sample, as well as the mutational data including SNVs, DNVs,

short insertions and deletions and chromosome translocations

are accessible at the European Genome-phenome Archive

under study ID EGAS00001003416.

Results

The collection of post-chemotherapy metastatic tumour

samples

WGS data deposited in databases usually originates from the

time before chemotherapy, hampering the analysis of the

genetic effects of the treatments. For this study numerous

samples were collected from a complex metastatic lung adeno-

carcinoma case, in which cisplatin chemotherapy was applied

prior to the clinically detectable emergence of the sampled

metastases. The course of the disease and the treatment his-

tory are shown on Figure 1.

Gefitinib therapy was started on the exon 19 deletion

(e19del) positive EGFR mutant tumour, and subsequent chest

CTs showed partial response (Supporting Information Fig. S1).

Sixteen months later an EGFR T790M resistance mutation was

detected in a bronchoscopy biopsy sample of the primary

tumour. Further treatments included one cycle of pemetrexed-

cisplatin chemotherapy, followed by pemetrexed monotherapy,

and a switch to the second generation irreversible EGFR inhibi-

tor afatinib (Fig. 1 and Supporting Information Fig. S1). Sam-

ples were taken from the primary tumour and the vertebral,

liver and paratracheal lymph node metastases at autopsy. None

of these metastases were observable during the preceding clini-

cal investigations. A detailed description of the clinical observa-

tions and sample collection can be found in the Supporting

Information Methods.

Accurate detection of somatic mutations in metastatic

cancer

An initial attempt at detecting somatic single nucleotide varia-

tions (SNVs) and small insertions and deletions (indels) was

made using MuTect216 on each sample versus a sequenced

peripheral blood (PB) DNA sample. Using this pipeline, we

detected a total of 17,415 SNVs and 4,412 indels (Supporting

Information Fig. S2). We found fewer mutations in the sam-

ples with lower tumour content (lung and lymph node), sug-

gesting that a fraction of low AF mutations were missed in

these samples. In addition, we found a considerable number

of mutations common to any combination of tumour samples,

which is incompatible with drawing a phylogenetic tree. Based

on the common origin of the tumour sites, we were able to

extract further low AF mutations from the raw data. After

subsequent filtering, we increased the number of detected

mutations common to all samples and reduced the number of

paradoxical mutations common to various subsets of the sam-

ples (Supporting Information Figs. S2 and S3, more details in
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the Supporting Information Methods). Similar post-filtering

steps were used for indels. The resulting final data set con-

tained a total of 9,832 SNVs, 330 insertions and 485 deletions

(Figs. 2a–2d). The distribution of the SNV AFs suggested

higher tumour content in the bone and liver metastasis sam-

ples, but double AF peaks in the same samples indicate that

subclonal mutations were also found (Fig. 2e).

Only two driver mutations in metastatic lung

adenocarcinoma

To understand the genetic drivers of the investigated primary

tumour and its metastases, we first looked for somatic muta-

tions that are classified as pathogenic or likely pathogenic by

the InterVar tool.18 We found in all samples the EGFR kinase-

activating e19del mutation, and the EGFR T790M mutation

responsible for gefitinib resistance (Supporting Information

Table S1). In addition, a homozygous TP53 R280T mutation was

present in all samples, resulting from a loss-of-heterozygosity

event on chromosome 17. The same TP53 mutation has been

repeatedly observed in lung adenocarcinoma (LUAD) as well as

other cancer types.24 No further somatic drivers common to all

samples were found, suggesting that EGFR activation and TP53

inactivation were sufficient to trigger lung adenocarcinoma.

Potentially pathogenic somatic mutations were found in

one allele of the XRN1, EVC2 and FGA genes in subsets of the

samples (Supporting Information Table S1). XRN1 has been

suggested as a candidate tumour suppressor gene in

osteosarcoma,25 but none of these three genes have been con-

firmed as oncogenic drivers in lung cancer. Therefore, it

appears that the formation of metastases was not induced by

the acquisition of extra driver mutations.

Six genes contained potentially pathogenic heterozygous

germline mutations (Supporting Information Table S1). The

RET T791Y mutation was most interesting as it can trigger the

ligand-independent activation of the RET receptor, thereby

contributing to the activation of the JAK/STAT3 pathway.26

Although RET activating mutations are widely found in thy-

roid cancers, only rearrangements of the RET gene are com-

mon in NSCLC.27 Indeed, while the RET Y791F mutation was

initially considered a low risk mutation, it was later reclassified

as a likely non-pathogenic polymorphism.28,29

Somatic mutagenesis across multiple metastases

Patterns of somatic mutations in cancer genomes provide

important information concerning tumour aetiology.30 When

viewed as triplet mutation patterns in the context of the

neighbouring bases, the SNV patterns in the four tumour

samples were very similar (Fig. 2f ). All categories of base sub-

stitutions were present, with a slight dominance of C > T and

C > A mutations. When compared to common cancer muta-

tional signatures21,31 the SNV patterns of the analysed lung

adenocarcinoma samples bore closest resemblance to the simi-

larly broad-spectrum signatures 5, 8 and 3, and little resem-

blance to the smoking-related signature 4, in agreement with

the non-smoking history of the patient (Fig. 2g). The spec-

trum of common mutations, indicative of mutagenesis early

in the life of the tumour, was also similar to the SNV spectra

of the individual metastatic samples (Fig. 2g and Supporting

Information Fig. S4). The lack of a marked difference between

the mutagenic processes in the early tumour and the different

metastases is in agreement with the lack of novel driver muta-

tions in metastases, and also suggests that the changed tissue

environment following metastasis formation had no influence

on mutagenesis in tumour cells.

Detection of cisplatin treatment-derived mutations

The main aim of this study was to detect and utilise treatment-

induced mutations for the purpose of understanding the history
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brain metastasis 1 
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brain metastasis 2 
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Figure 1. Disease history of the young never-smoker patient. The main diagnostic events and relevant treatments are shown over a timeline

in months. Collected samples are indicated with asterisks. [Color figure can be viewed at wileyonlinelibrary.com]
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of metastatic tumours. Our expectation was that treatment-

induced mutations would likely be subclonal if the treatment

hit an existing tumour site or metastasis, but clonal if a metasta-

sis was formed from a single seeding cell following the

treatment. We could indeed detect mutations with different

AFs (Fig. 3a).

SNVs common to all tumour sites had pronouncedly

higher AF in the lung, bone and lymph node sample than

(a) (b)

(c)

(f) (g)

(d)

(e)

(a) (b)

(c)

(f)ff (g)

(d)

(e)

Figure 2. Characterisation of mutations in whole genome sequences. (a) Number of SNVs in the lung, bone, liver and the lymph node

(LN) samples. The PB column accounts for those mutations that are present in the peripheral blood sample with one sequence read,

originating mainly from noise. (b) Number of insertions and deletions. (c, d) Venn diagrams showing the distribution of SNVs and indels

amongst the samples, respectively. (e) Distribution of allele frequencies of the detected SNVs. (f ) Triplet SNV spectra of the tumour samples.

Each mutation class, as indicated at the top of the panel, is separated into 16 categories based on the identity of the preceding and

following nucleotide as shown below. The order of the following nucleotides, not shown due to lack of space, is alphabetical. (g) Similarity of

the determined triplet spectra (purple) to COSMIC cancer signatures (numbered) as shown on a t-distributed stochastic neighbour embedding

(t-SNE) plot. The spectrum of mutations that are unique (u) to individual samples, common to all samples, and the cell line-derived cisplatin

spectrum are also shown. [Color figure can be viewed at wileyonlinelibrary.com]
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unique SNVs, suggesting that we could detect subclonal muta-

tions in the unique SNV pool (Supporting Information

Fig. S5). Dinucleotide mutations (DNVs) had a similar AF

distribution to unique SNVs in all samples, and we could con-

firm that the majority of DNVs were unique to individual

tumour samples (Fig. 3b and Supporting Information Fig. S6).

DNVs associate with certain SNV signatures,32 and are other-

wise rare in cancer genomes. However, we showed earlier that

cisplatin induces specific types of dinucleotide mutations at

sites of intrastrand crosslinks9 and the cisplatin treatment of

human cell lines led to a closely related pattern of DNV muta-

tions to what we found in chicken DT40 cells.10 Remarkably,

we found very similar types of DNVs in the sequenced

samples to those induced by cisplatin in cell lines (Figs. 3c

and 3d). The most common types of DNVs were CC > AA

and CT > AA, consistent with mutations forming at G Ĝ and

A Ĝ cisplatin intrastrand adducts.

To further explore whether the single cycle of cisplatin

treatment administered to the patient was mutagenic, we

defined a cisplatin-induced triplet SNV signature based on the

mutation spectrum of cisplatin-treated human cell lines10 and

looked for its contribution to the detected SNV pools. A

decomposition into all triplet signatures implicated in cancers

of the lung and the sampled metastatic sites in COSMIC,21

plus the cisplatin signature, revealed a contribution of the cis-

platin SNV signature to unique mutations in the lung primary

tumour sample as well as in the bone and lymph node metas-

tases (Fig. 4a), but not to mutations detected in TCGA-

derived whole genome LUAD or LUSC sequences of either

non-smoker or smoker patients who did not receive prior cis-

platin chemotherapy (Fig. 4b), suggesting that we specifically

detected cisplatin-induced SNVs in the samples from the trea-

ted patient.

The DNV spectra of the TCGA samples were also mark-

edly different from those of our sequenced samples, with the

samples from smokers dominated by CC > AA mutations

(Figs. 4c and 4d and Supporting Information Fig. S7). Also,

the DNV spectrum of our four sequenced samples was signifi-

cantly more similar to the cell line-derived cisplatin spectrum

than that from the TCGA samples from either lifelong non-

smokers or current smokers (Fig. 4e; p = 1.963 × 10−4 and

p = 2.416 × 10−7, respectively, t-test). Our results conclusively

prove that even a single cisplatin treatment induces detectable

SNV and DNV mutagenesis in lung cancer genomes.

Ongoing structural rearrangements affect the EGFR gene

A further genomic consequence of treatment was the emer-

gence of the EGFR T790M mutation responsible for gefitinib

resistance. Irreversible inhibition of T790M-EGFR can induce

the amplification of the mutation containing allele,33 and afa-

tinib resistance has been shown to be accompanied by ele-

vated EGFR expression in cell lines.34 In order to investigate

whether the afatinib treatment induced variations in the EGFR

gene, we performed a copy number analysis. The sequence

coverage at the EGFR locus and the whole chromosome

7 revealed that the EGFR gene also underwent amplification
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Figure 3. Characterisation of DNVs. (a) Allele frequency distribution of DNVs as compared to the SNVs, classified based on the Venn diagram

(unique if found only in one sample and common if found in all four tumour samples). (b) Venn diagram of DNVs. (c, d) Sequence categories

of DNVs. The categories most predominant in the cisplatin treated human cell lines10 (d) are shown in black boxes. [Color figure can be

viewed at wileyonlinelibrary.com]
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(Figs. 5a and Supporting Information Fig. S8), a phenomenon

that is commonly observed in EGFR-mutated LUAD.

To estimate the timing of the amplification events, we

determined the copy number of each EGFR allele using AF

information and tumour content data precisely calculated

from germline SNP AFs at the TP53 locus that underwent loss

of heterozygosity (Figs. 3a and Supporting Information

Fig. S9) and assuming that the T790M mutation occurred on

the e19del EGFR bearing allele.35 Each sample was different:

in addition to one normal allele, the primary tumour con-

tained one e19del allele and ten additional e19del+T790M

alleles, while the metastases contained two e19del alleles and

one or two e19del+T790M alleles (Fig. 5b). In the lymph node

sample, the calculation showed very close to 1.5 copies of the

e19del+T790M allele; we suspect this is due to a mixture of

two cell populations in this sample (see below). The last com-

mon ancestor of the primary tumour and the three sampled

metastases had at most three copies of EGFR: a wild type, an

e19del and an e19del+T790M allele, though our results cannot

exclude the possibility that the T790M mutation arose several

times independently. These data show that either the deletion-

activated or the TKI-resistant EGFR allele may undergo

amplification, and that such amplification events continue

after metastasis formation.

Searching for a mechanism for EGFR amplification, we

looked for genome-wide patterns of structural variations (SVs).

Uneven sequence coverage across the whole genome suggested

the presence of many rearrangements (Supporting Information

Fig. S10), and we detected numerous translocation breakpoints

using the CREST algorithm. Interestingly, most translocations

were unique to the lung and liver samples, though a set of the

liver translocations were also present in the lymph node sample

at low AF (Figs. 5c and 5e). There was an especially high num-

ber of low AF subclonal breakpoints in the lung sample

(Supporting Information Fig. S11). We selected two breakpoints

downstream of the EGFR gene (Fig. 5a), and confirmed by

PCR across the breakpoints that these two translocations

between chromosomes 2 and 7 were not present in the bron-

choscopy biopsy sample taken at the time of the emergence of

the T790M mutation (Figs. 1a and 5d). All these observations

(a) (b)

(c) (d) (e)

Figure 4. The mutagenic effect of cisplatin treatment. (a) Decomposition of SNV spectra to a selection of COSMIC signatures supplemented

with the cisplatin spectrum as defined in Boot et al.10 (b) A similar SNV spectrum decomposition on TCGA-derived WGS LUAD and LUSC

samples of never-smoker and smoker patients, not treated with cisplatin. (c, d) DNV sequence categories in case of never-smoker and

smoker patients, with black boxes indicating the cisplatin type mutations. (e) RMSD of the DNV spectra from the cell line-derived DNV-

spectrum. The four samples from the cisplatin-treated patient are compared to smoker and non-smoker patient data from TCGA. [Color figure

can be viewed at wileyonlinelibrary.com]
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point to ongoing large-scale genome instability late in the his-

tory of the tumour, which may provide the selectable events

leading to EGFR amplification.

A phylogenetic model for tumour growth and spread

The distribution of somatic mutations amongst the samples

allows the construction of simple tumour phylogeny.36 Our

aim was to use the distribution and AF of treatment-induced

mutations to augment a phylogenetic tree with timing infor-

mation. The Venn diagram of high AF somatic mutations

with the strictest filter suggests a simple phylogeny whereby

the bone metastasis is an almost direct descendant of the

lymph node metastasis, while the liver metastasis evolved sep-

arately (Supporting Information Fig. S2E). However, the

inclusion of low AF mutations in the final filtering revealed

two exclusive groups of SNVs in the lymph node that are

shared with either the bone or the liver metastasis. Both of

these groups are subclonal, with a mean AF of 0.11 and 0.06,

respectively, while the clonal common mutations have a mean

AF of 0.14 (Supporting Information Fig. S5), in agreement
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Figure 5. Structural variations identified with the CREST algorithm. (a) Amplification of the EGFR gene demonstrated by the increased

coverage of the aligned sequence. B1 and B2 indicate two mapped breakpoints. (b) Copy numbers of the WT, exon19del and T790M

containing EGFR alleles, estimated based on the calculated tumour content and the coverage at the EGFR positions, as well as the allele

frequencies of heterozygous polymorphisms, the coverage of the T790 position and allele frequency of the T790M mutation. (c) Venn

diagram of identified chromosomal translocations. (d) PCR from the autopsy samples and the bronchus biopsy sample confirms the late

formation of the B1 and B2 breakpoints. (e) Chromosomal translocations shown on genomic chord diagrams. The translocations are coloured

based on their allele frequencies. [Color figure can be viewed at wileyonlinelibrary.com]
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with the calculated tumour content of the lymph node sample

(26%). This suggests that the lymph node sample contained

two distinct groups of tumour cells related to either the bone

or the liver metastasis, implying that the seeding route for

both these distant metastases led through the same parathra-

cheal lymph node (Fig. 6). Thus the improved filtering of low

AF mutations allows the refinement of tumour phylogeny.

The AF distribution of DNVs, which are mostly cisplatin-

induced, closely matches that of common SNVs in the liver

metastasis, thus they must be clonal. We can conclude that

the ancestor of the liver metastasis sample was a single cell at

the time of the cisplatin treatment, therefore this metastasis

likely arose after the treatment. The contribution of the cis-

platin SNV signature to mutations shared by the liver and

lymph node but not to unique liver mutations also confirms

the clonality of these mutations in the liver sample, and places

the origin of the liver metastasis in the lymph node. In con-

trast, cisplatin-induced DNVs are subclonal in the bone and

lymph node metastases, which must therefore have existed

before the treatment despite being undetectable by clinical

imaging. With the caveat that a sampled site cannot fully

reflect the clonality of the full metastatic site, these data allow

the drawing of a timed phylogenetic tree (Fig. 6); also showing

early and late EGFR amplification events gleaned from the

study of rearrangements.

Discussion

In this study, we were able to directly demonstrate and mea-

sure the mutagenic effect of cisplatin treatment on lung ade-

nocarcinoma, and use this information together with a

detailed analysis of genome sequences of primary and meta-

static tumour sites to build a timed model of tumour

development.

The mutagenicity of cytotoxic therapy is a concern due to

the potential of induced mutations to accelerate the evolution

of resistance in cancer cells, and to trigger carcinogenic

changes in normal tissue. In a DT40 cell culture model we

previously estimated the mutagenicity of cisplatin treatment at

IC50 concentration as 200 base substitutions per gigabase per

treatment cycle,9 and not entirely comparable weekly treat-

ments of MCF10A and HepG2 cells caused 150–450 base sub-

stitutions per gigabase per treatment.10 To find the

mutagenicity of cisplatin per tumour cell, we must consider

only clonal mutations in the sequenced samples. Eight percent

of the 476 SNVs common to the liver and lymph node sam-

ples belong to the cisplatin signature, and these mutations are
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Figure 6. A qualitative model showing the relationship between the primary tumour and metastases. Cisplatin-induced mutant subclones are

depicted. [Color figure can be viewed at wileyonlinelibrary.com]
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clonal in the liver metastasis, suggesting that at least 13 SNVs

per gigabase were induced by cisplatin in its single ancestral

cell. An alternative estimate can be obtained from the number

of DNVs, which were present at about 7.5% of the number of

SNVs in both of the above studies. In the liver sample there

were 17 clonal DNVs attributable to the cisplatin effect, lead-

ing to an estimate of 75 SNVs per gigabase. These estimates

are lower than the cell line-based observations, suggesting

more limited access of the drug to tumour cells. LUAD

genomes from smokers or never-smokers contain a mean of

12,100 and 2,600 mutations per gigabase respectively,37 but

these mutations accumulated over decades, therefore repeated

cycles of cisplatin treatment probably significantly increase the

mutation rate and contribute to the evolution of resistance.

The dominance of cisplatin-induced mutations amongst all

DNVs in cell lines and tumours from a never-smoker suggests

that a DNV spectrum can be used for more sensitive detection

of cisplatin-induced mutagenesis than an SNV spectrum.

Smoking also induces a high number of mainly CC > AA

DNVs, but we were able to distinguish the smoking DNV

spectrum from the cisplatin-induced DNVs. Finding clonal

cisplatin-induced DNVs in a metastatic tumour sample is

therefore a simple method for ascertaining that the given

metastasis arose after cisplatin treatment of the patient.

In the investigated LUAD case the liver metastasis

appeared late, and the data also proves that it was seeded from

a single cell or cell clone. In contrast, the subclonality of cis-

platin mutations in the bone and lymph node metastases sug-

gests that the metastatic process that initiated their formation

had begun prior to the treatment, even though the sampled

metastases were not observed at that time. Subclonality of

somatic mutations in metastases can also suggest polyclonal

seeding.38,39 We observed evidence for this in the lymph node

metastasis, similar to recently reported data from colon can-

cer.40 The clonal state of the same mutations at two other sites

suggests that this subclonality was due to the anatomical loca-

tion and seeding routes of the respective metastases rather

than a cooperative interaction of the two cell populations.41

The shared seeding routes through the same proximal lymph

node metastasis to distant metastases may be a trait of

oligometastatic LUAD.

EGFR amplification is associated with more aggressive

tumours, and often occurs at a late stage of the disease.42 The

presence of extreme EGFR amplification only in the primary

site suggests that it was indeed a late event in this case, also

supported by the subclonality of the amplification breakpoints

upstream of the gene. The therapy was switched from gefitinib

to afatinib following the seeding of metastases, raising the pos-

sibility that the amplification was a response to increase the

afatinib resistance of the tumour that already contained the

EGFR T790M mutation. The amplification of the EGFR gene

occurred via chromosomal translocations, and other late stage

structural variations were also identified in the primary

tumour and the liver metastasis. A number of the liver-

specific clonal chromosome translocations were found as sub-

clonal events in the lymph node, supporting the conclusion

that the liver metastasis was seeded at the last stages of the

disease, after the switch to afatinib.

The detection of clonal tumour evolution from high-

coverage WGS samples has been described,43 and various

strategies have been reported for analysing clonal evolution

from WGS data.44,45 The analysis of clonal composition of

tumours has showed that subclones can contribute to meta-

static seeding and establish resistance to treatments.46,47 Evo-

lutionary studies of a glioblastoma case have demonstrated

the importance of understanding of the subclonal events for

personalised therapy.48 Treatments can also induce subclonal

events, but few WGS studies have addressed this question.

The effect of aromatase inhibitors on clonal architecture was

shown by WGS analysis of matched tumour-normal pairs

before and after neoadjuvant therapy in oestrogen-receptor-

positive breast cancers,49 and resistance and clonal advantage

after therapy was identified in circulating tumour DNA in

chronic lymphocytic leukaemia.50 Here we showed for the first

time that the analysis of subclonal events in matched meta-

static tumour samples can also be used for a retrospective

analysis of the timing metastatic events, even using standard-

coverage WGS data, contributing to our understanding of the

evolution of oligometastatic disease, as well as of the genomic

imprint of chemotherapeutic treatments.

In conclusion, we have demonstrated the use of genomics

to map the progress of metastatic cancer, making use in par-

ticular of information derived from the mutagenic effect of

cisplatin therapy. As in related studies, the conclusions on

clonality are limited by the size of the tissue sample in relation

to the tumour site. Nevertheless, we used the obtained infor-

mation to show that early and late metastases may seed

through the same proximal lymph node, and that independent

late EGFR amplification events at different sites contribute to

the ongoing evolution of the lung adenocarcinoma. Tumour

type specific studies on the timing of metastasis formation rel-

ative to established treatment practices will be valuable for

shaping future therapy regimens.
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