
MNRAS 000, 1–14 (2019) Preprint 4 June 2019 Compiled using MNRAS LATEX style file v3.0

Galaxy shape measurement with convolutional neural
networks
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ABSTRACT

We present our results from training and evaluating a convolutional neural network
(CNN) to predict galaxy shapes from wide-field survey images of the first data release
of the Dark Energy Survey (DES DR1). We use conventional shape measurements
as “ground truth” from an overlapping, deeper survey with less sky coverage, the
Canada-France Hawaii Telescope Lensing Survey (CFHTLenS). We demonstrate that
CNN predictions from single band DES images reproduce the results of CFHTLenS at
bright magnitudes and show higher correlation with CFHTLenS at fainter magnitudes
than maximum likelihood model fitting estimates in the DES Y1 im3shape catalogue.
Prediction of shape parameters with a CNN is also extremely fast, it takes only 0.2
milliseconds per galaxy, improving more than 4 orders of magnitudes over forward
model fitting. The CNN can also accurately predict shapes when using multiple images
of the same galaxy, even in different color bands, with no additional computational
overhead. The CNN is again more precise for faint objects, and the advantage of the
CNN is more pronounced for blue galaxies than red ones when compared to the DES
Y1 metacalibration catalogue, which fits a single Gaussian profile using riz band
images. We demonstrate that CNN shape predictions within the metacalibration
self-calibrating framework yield shear estimates with negligible multiplicative bias,
m < 10−3, and no significant PSF leakage. Our proposed setup is applicable to current
and next generation weak lensing surveys where higher quality “ground truth” shapes
can be measured in dedicated deep fields.

Key words: gravitational lensing: weak – techniques: image processing – cosmology:
dark matter

1 INTRODUCTION

Light from distant galaxies is deflected by the tidal fields of
inhomogeneous matter along the line of sight, distorting the
shapes of sources, a phenomenon called gravitation lensing.
Cosmic shear is the weak gravitational lensing effect aris-
ing from no obvious foreground mass apart from the large
scale structure of the Universe. Detecting the effects of the
foreground mass density field on distant galaxy images al-
lows us to indirectly map the distribution of the elusive, and
apparently very abundant dark matter. Furthermore, char-
acterising matter distribution at different redshifts through
the lensing signal offers a unique window to the evolution of
the dark energy dominated late Universe, complementary to
other observations (see Mandelbaum et al. (2018); Kilbinger
(2015) for recent reviews).

When the lensing effect of foreground matter is strong
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enough, it can dramatically alter the appearance of back-
ground sources, making the lensing signal detectable even for
individual galaxies. The large scale structure, however, only
distorts the shapes of background objects with a small, ap-
proximately linear shear, rendering the lensing signal indis-
tinguishable from intrinsic shape variations of lensed galax-
ies. The spatial correlations in the apparent shapes of galax-
ies introduced by the large scale structure make cosmic shear
statistically measurable from an ensemble of galaxies. Since
the first detection of cosmic shear about two decades ago
(Bacon et al. 2000; Kaiser et al. 2000; Van Waerbeke et al.
2000; Wittman et al. 2000) weak lensing measurements have
matured into a potent probe of cosmology. Weak lensing sur-
vey volumes increased constantly, with the COSMOS field
and Hubble Space Telescope images (Schrabback et al. 2010)
followed by CFHTLenS 1 which was the first major weak

1 http://www.cfhtlens.org
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lensing survey pushing the number of galaxies with high-
quality shape measurements to the millions by covering an
area of 154 square degrees at a resolved galaxy density of
17 per square arc minute. Shapes of hundreds of millions of
galaxies are being measured by ongoing weak lensing sur-
veys, such as the Dark Energy Survey (DES) 2, the Kilo-
Degree Survey (KiDS) 3, and the Subaru Hyper Suprime-
Cam Survey (HSC) 4, whereas billions more will be observed
by large surveys that are under construction, such as the
Large Synoptic Survey Telescope (LSST) 5, or in the de-
velopment phase, such as the Euclid mission 6 or the Wild
Field Infrared Survey (WFIRST) 7.

Cosmic shear only distorts the shapes of galaxies at per-
cent levels (Kilbinger 2015), and the signal is dominated by
noise from intrinsic shape variation of galaxies, atmospheric
and instrumental distortions. The bulk of the cosmic shear
signal is carried by shapes of small and faint galaxies typi-
cally those with sizes of a few arcsecs and 24 magnitudes
(Kilbinger 2015). Weak lensing surveys, therefore, need to
accurately estimate the shapes of galaxies which only cover
a few pixels and have very low signal to noise ratios. Shape
measurements are further complicated by the smearing of
the original galaxy images by atmospheric and instrumental
point spread functions (PSF). The PSF itself has a coher-
ent spatially and temporally variable anisotropy mimicking
the effect of cosmic shear, therefore PSF anisotropy must be
carefully measured and corrected for precise shear estima-
tion (Miller et al. 2013).

Popular shape measurement algorithms fall in two main
categories, the first approach attempts to directly measure
the shapes of galaxies through second-order moments of the
surface brightness profile (Kaiser et al. 1995). Another ap-
proach, dominantly used in recent weak lensing surveys, uses
forward model fitting, where parametric surface brightness
model profiles are convolved with the PSF and compared
to measurements (Kuijken 1999; Miller et al. 2007; Kitching
et al. 2008; Miller et al. 2013; Kuijken et al. 2015; Hilde-
brandt et al. 2017; Fenech Conti et al. 2017; Zuntz et al.
2018). Model fitting is preferred over measuring moments
due to the efficient handling of the PSF and the joint fit
over multiple exposures (Heymans et al. 2012) or colours
(Zuntz et al. 2018). In model fitting approaches it is conve-
nient to parametrise the shapes of galaxies with the shear
style complex ellipticity ε , which is an unbiased estimator
of weak shear.

ε1 + i ε2 =
a − b
a + b

ei 2θ (1)

, where a is the length of the semi-major axis, b is the
length the semi-minor axis and θ is the position angle of an
ellipse.

The redshifts of galaxies also need to be measured for
optimal extraction of the cosmological signal, however, this
is not possible with spectroscopy due to the vast number of

2 https://www.darkenergysurvey.org
3 http://kids.strw.leidenuniv.nl
4 https://hsc.mtk.nao.ac.jp/ssp/
5 http://www.lsst.org/
6 http://sci.esa.int/euclid/
7 http://wfirst.gsfc.nasa.gov/

galaxies used, and weak lensing surveys need to rely on pho-
tometric redshift estimates from multi-band observations.
Shapes of galaxies are highly correlated in different colors
and information from multiple bands can be combined to
improve shape measurements (Jarvis & Jain 2008). The fea-
sibility of this approach was demonstrated in one of the DES
Y1 shape catalogues (Zuntz et al. 2018).

Pixel values of a galaxy image have complex non-linear
relationship with ellipticity parameters and the likelihood
surface is skewed towards zero ellipticity and towards the
ellipticity of the PSF. This effect introduces a bias in the
maximum likelihood estimate or the expected value of the
shape parameters, which becomes significant for noisy galax-
ies, hence it is called the “noise bias” (Bernstein & Jarvis
2002; Kitching et al. 2010a; Melchior & Viola 2012; Refregier
et al. 2012; Kacprzak et al. 2012; Miller et al. 2013). Follow-
ing Heymans et al. (2006), bias in ensemble shear measure-
ments is usually parametrized with a linear function.

〈εobsi 〉 = (1 + m) gi + c + αεPSFi (2)

, i denotes the component of the ellipticity (1,2), g is
the true cosmic shear, the intercept c is called the additive
bias, the excess slope m is the multiplicative bias and α is
the PSF leakage. The additive bias and the PSF leakage are
strongly related and they are corrected using measurement
data (Heymans et al. 2012), however, the multiplicative term
is generally mitigated with simulations.

The multiplicative bias strongly depends on the ob-
served S/N and size of galaxies and the precise relationship
is identified through estimating the properties of millions
of galaxy images simulated with sophisticated tools (Rowe
et al. 2014) and known shape parameters (Miller et al. 2013;
Jarvis et al. 2016; Fenech Conti et al. 2017; Zuntz et al. 2018;
Pujol et al. 2019). These simulations need to be specifically
tailored to the details of surveys, and the calibration process
has to be conducted for every single survey or data release.
After the precise nature of the bias is established, empiri-
cal corrections of measured galaxy ellipticities are applied to
negate the bias.

The DES Y1 shape catalogue (Zuntz et al. 2018) em-
ployed an innovative approach called metacalibration,
which only uses observational data and post measurement
shear operations and convolutions to correct for noise bias
(Huff & Mandelbaum 2017; Sheldon & Huff 2017). meta-
calibration offers a principled shear calibration framework
without large numbers of calibration factors derived from
simulations, with sufficiently small multiplicative bias even
for large future weak lensing surveys (Sheldon & Huff 2017).
The PSF anisotropies are handled during the deconvolution
step in metacalibration, which allows the calibration of
any well-behaving estimator (Sheldon & Huff 2017), such
as adaptive moments (Bernstein & Jarvis 2002), not only
model fitting with forward convolutions.

Apart from noise bias, selection biases also appear when
galaxies are preferentially detected depending on the align-
ment of their shapes, the anisotropy of the PSF and lensing
shear (Kaiser 2000; Hirata & Seljak 2003). Selection bias
may also affect detected galaxies due to the fact that the
ellipticity likelihood surface is narrower for galaxies if the
intrinsic and PSF ellipticities are aligned. Methods which
assign an inverse-variance weight to shape measurements

MNRAS 000, 1–14 (2019)
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based on the width of the likelihood surface (Miller et al.
2013; Fenech Conti et al. 2017), favour galaxies parallel to
the PSF, creating a selection bias in the shear.

Shape measurement approaches which assume simpli-
fied galaxy surface brightness profiles potentially suffer from
’model bias’ if they are not able to capture the shapes of
complex galaxies (Voigt & Bridle 2010; Melchior et al. 2010).
Model bias is expected to have only a minor contribution in
ground-based observations (Miller et al. 2013; Mandelbaum
et al. 2015), and it was explored in detail for model fit-
ting shape measurements (Zuntz et al. 2013; Kacprzak et al.
2014).

Biases in the shape measurements could systematically
alter cosmological parameters inferred from weak lensing
measurements and the community understandably paid par-
ticular attention to the question of systematic biases, also
in the form of organized challenges (Heymans et al. 2006;
Massey et al. 2007; Bridle et al. 2009, 2010; Kitching et al.
2010b,a; Simet et al. 2014; Mandelbaum et al. 2015). How-
ever, shape measurements not only need to be unbiased but
also they need to have small variance in order to reduce
statistical uncertainty, a quantity often expressed in terms
of an effective galaxy surface density (Heymans et al. 2012;
Chang et al. 2013). Large efforts are ongoing and planned
(HSC, LSST, Euclid, WFIRST) to conduct very deep sur-
veys which aim to radically increase the galaxy surface den-
sity and the statistical power of measurements (Takada 2010;
Chang et al. 2013; Amendola et al. 2018). Increased galaxy
densities enable more precise measurements of cosmic shear
at high angular resolutions, allowing the extraction of signif-
icant non-Gaussian information, which can further empower
weak lensing measurements (Ribli et al. 2019a).

The variance of shape measurements received much less
attention than their bias, probably because one might think
that model fitting with forward convolution is an optimal
method. However, noise in galaxy shape measurements is
known to be not a completely independent shot noise (Man-
delbaum et al. 2015) and model fitting approaches can only
work with simplified parametric surface brightness profiles
(Miller et al. 2013; Zuntz et al. 2018), which may be sub-
optimal for faint irregular galaxies, abundant in weak lens-
ing surveys. Systematic biases in current surveys are signif-
icantly smaller than statistical uncertainties (Mandelbaum
et al. 2015; Zuntz et al. 2018; Fenech Conti et al. 2017),
therefore shape measurements with smaller dispersion could
further reduce the uncertainty of underlying cosmological
parameters.

Maximum likelihood model fitting with forward con-
volutions takes approximately 1.6 seconds per galaxy per
image (Zuntz et al. 2013), consuming 200,000 CPU hours
for the DES Y1 im3shape shape catalogue. The final DES
survey is expected to include an order of magnitude more
galaxies, and near future surveys such as LSST and Euclid
will again grow an order of magnitude over that number.
Including multiple colors in the fitting process or handling
approximately 1000 individual observations per galaxy in
LSST further boost the computational burden of maximum
likelihood model fitting. In order to handle the large amount
of data expected in future surveys, extremely fast shape es-
timators are needed which can handle multi-epoch data ef-
ficiently.

This work focuses on reducing the statistical dispersion

of shape estimates, via convolutional neural networks (CNN)
which recently revolutionized the field of computer vision
and reached human level accuracy in image classification (He
et al. 2015). CNNs are sophisticated machine learning meth-
ods which are able to learn from a large number of labelled
images, and apart from image classification they also excel
in image deconvolution or ”super-resolution” in the presence
of noise for everyday images (Xu et al. 2014) or microscopy
(Wang et al. 2019). We construct a large labelled dataset
using images from a wide survey, DES DR1 (Abbott et al.
2018; Morganson et al. 2018), and high quality galaxy shape
measurements from a significantly deeper survey with over-
lapping footprint, CFHTLenS (Erben et al. 2013; Heymans
et al. 2013; Hildebrandt et al. 2012; Miller et al. 2013). The
CNN is trained to predict ellipticities of galaxies measured
by the deeper survey using images of the wide survey as
inputs.

CNNs evaluate an image with a single forward pass
though their layers, while making use of massively par-
allel computer hardware (GPU, TPU) which allow sub-
millisecond execution times per galaxy, orders of magnitude
faster than model-fitting approaches. The extreme speed of
CNN based estimation alone warrants the exploration of this
approach, as it may be able to handle the expected data
surge and exploit all the information available at the same
time in near future large weak lensing surveys.

Multiple studies explored recently machine learning and
CNNs in problems related to weak gravitational lensing or
the estimation of galaxy properties Dieleman et al. (2015)
used custom rotation invariant CNNs for galaxy morphol-
ogy prediction using ground truth values determined by
citizen scientist in the Galaxy Zoo project (Lintott et al.
2008). CNNs were used to infer the morphological param-
eter of simulated galaxies (Tuccillo et al. 2017), with an
improved catalogue released for SDSS (Domı́nguez Sánchez
et al. 2018). Herbel et al. (2018) use CNNs for the estima-
tion of PSF shape parameters to enable fast PSF modelling.
Springer et al. (2018) train CNNs to directly predict rela-
tively strong simulated shears in large, resolved galaxy im-
ages in the context of galaxy cluster lensing. Most recently
Tewes et al. (2019) train neural networks to calibrate shear
measurements using biased shape estimators such as second
order moments and various galaxy parameters as inputs.
The approach used by Tewes et al. (2019) is complementary
to our work and it could use the output of a shape estimator
CNN to achieve potentially more accurate shear estimators
with small bias.

The outline of the paper is the following: in §2 we de-
scribe the dataset used for training and testing, the details
of the CNN architecture and the training process. In §3 we
train a shape estimator CNN on single band images and
compare it to the DES Y1 im3shape catalogue depending
of various measured factors. In §4 we train the CNN on
multiple band images and compare it to the DES Y1 meta-
calibration catalogue. In §5 we determine the necessary
training dataset size. In §6 we test the biases of the CNN
shape estimator nested in metacalibration using a large
suit of simulated galaxies, and finally we discuss the results
in §7.

MNRAS 000, 1–14 (2019)
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Figure 1. Example galaxies on DES (left) and the deeper
CFHTLenS survey(right) images in the i-band. CFHTLenS im-

ages have higher S/N and they allow more accurate shape mea-
surements of the same galaxies. The galaxies have i-band magni-

tudes (22.05, 22.09, 22.18), top to bottom.

2 DATA AND METHODS

2.1 Observational data

We select galaxies from DES Y1 shape catalogues which are
also in the overlapping W4 region of CFHTLenS. The DES
Y1 shape catalogues (im3shape,Metacalibration) (Zuntz
et al. 2018), are cross matched with the CFHTLenS shape
catalogue (Erben et al. 2013) using Skyquery, a probabilis-
tic join engine for cross-identification of multiple astronom-
ical databases (Dobos et al. 2012). We only use galaxies
with confident CFHTLenS shape measurements, specifically,
where the inverse variance weight is larger than 14. The final
dataset contains ≈ 1.4 × 105 galaxies.

The corresponding DES DR1 stacked multi epoch im-
ages (Abbott et al. 2018) were downloaded for each galaxy
and 48 pixel sized postage stamps were cut out in each of the
′grizY ′ DES bands. Stacked multi epoch images are consid-
ered sub-optimal for shear measurement and were recently
replaced by joint fitting of multiple single exposures for the
analysis of weak lensing surveys (Heymans et al. 2012; Miller

Figure 2. We use non-overlapping training and test regions to
evaluate generalisation to new regions in the sky.

et al. 2013; Kuijken et al. 2015; Fenech Conti et al. 2017;
Hildebrandt et al. 2017; Zuntz et al. 2018), however, these
images are suitable for evaluation of the dispersion of shape
estimates. Potential biases associated with dithered stacked
images due to PSF discontinuities and interpolation (Miller
et al. 2013) are not important here as we do not attempt
to go further than shapes of individual galaxies, and we do
not calculate ensemble shear estimates. The depth of the Y1
and the DR1 releases of DES are similar in the part of the
equatorial region used in this study, as Y2 and Y3 opera-
tions concentrated on other regions of the sky (Diehl et al.
2016).

We define highly confident ellipticity parameters mea-
sured with lensfit using the CFHTLenS i band images
(Miller et al. 2013) as the ’ground truth’ labels to train our
neural network. The two surveys use telescopes with similar
mirror sizes, and CFHTLens i band data was integrated for
4300 seconds, while the DES DR1 data has 450 second inte-
grated exposure in each of the griz bands. The CFHTLenS
survey is approximately 1 magnitude deeper than DES DR1
(Erben et al. 2013; Abbott et al. 2018), which allows much
more precise shape measurements for faint galaxies. The dif-
ference in image quality for faint galaxies is demonstrated
visually with examples on [Fig. 1].

We split the dataset into a 70% training and a 30% test
set based on the position on the sky [Fig. 2], in order to eval-
uate the capability of the CNN to generalize to a new region,
other than the one used for training. Generalization to other
regions of the sky is essential in our proposed scheme where
the network is trained on dedicated deep fields of surveys
but used for estimation on the whole wide field survey.

2.2 Evaluation

For calibration purposes, the ’accuracy’ of shape measure-
ment algorithms is often characterized by the values of mul-
tiplicative and additive bias. However, in this study we set
out to reduce the variance, the statistical dispersion of shape
measurements, therefore we choose a different metric which

MNRAS 000, 1–14 (2019)
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# Layers Output size

1 Convolution (3 × 3) 48 × 48 × 16
2 Convolution (3 × 3) 48 × 48 × 16
3 Convolution (3 × 3) 24 × 24 × 32
4 Convolution (3 × 3) 24 × 24 × 32
5 Convolution (3 × 3) 12 × 12 × 64
6 Convolution (1 × 1) 12 × 12 × 32
7 Convolution (3 × 3) 12 × 12 × 64
8 Convolution (3 × 3) 6 × 6 × 128
9 Convolution (1 × 1) 6 × 6 × 64

10 Convolution (3 × 3) 6 × 6 × 128
11 Convolution (3 × 3) 3 × 3 × 256
12 Convolution (1 × 1) 3 × 3 × 128
13 Convolution (3 × 3) 3 × 3 × 256

- Average Pooling (3 × 3) 1 × 1 × 256
14 Dense 2

Table 1. Neural network architecture. Number of trainable pa-

rameters: 837,586 .

reflects the covariance of ground truth and estimated ellip-
ticities: the Pearson correlation coefficient.

ρ(x, y) = cov(x, y)
σx σy

(3)

We do acknowledge the immense importance of bias cor-
rection, which must be thoroughly performed for credible
shear measurements, and we demonstrate that CNN shape
estimates have sufficiently small bias for future large surveys
when implemented in the metacalibration framework. We
also expect that CNN shape estimates can just as well be cal-
ibrated using a large number of realistic image simulations
as any other well-behaving shape estimator. Additional pa-
rameters for calibration, such as signal to noise ratio and
size could also be predicted by the CNN, similarly to shape,
or they could be derived from other tools such as SExtractor
(Bertin & Arnouts 1996). For galaxy level comparisons per-
formed in the present study, bias corrections are negligible
compared to the intrinsic dispersion of galaxy ellipticities.

2.3 Convolutional neural network, training and
testing

We design a custom CNN architecture specifically for
the task, building on successful image classification CNNs
(Krizhevsky et al. 2012; Simonyan & Zisserman 2014;
Szegedy et al. 2015; He et al. 2016; Redmon & Farhadi
2017). The network consists of subsequent sliding window fil-
ter matching operations, called convolutional layers, which
can powerfully express the translation invariance of image
data. The width of convolutional filters is 3×3 pixels for the
majority of layers, as this filter width makes most effective
use of parameters (Simonyan & Zisserman 2014). Starting
from the fifth layer these 3 × 3 convolutional layers are pre-
ceded by a bottleneck 1×1 “convolutional” layer, which com-
presses input representations to half the number of filters to
save computation time and reduce the number of overall pa-
rameters. These bottleneck layers are found in almost every
single modern CNN architecture (Szegedy et al. 2015; He
et al. 2016; Redmon & Farhadi 2017).

Each convolutional layer, except for the last one, is fol-
lowed by batch normalization (Ioffe & Szegedy 2015), which

rescales activations in the previous layer in order to stabilize
and facilitate training. Batch normalizations are followed by
non-linear activation functions called Recitified Linear Units
(ReLU), which take the form max(0, x). The flat part creates
non-linearity, which allows the neural network to approxi-
mate complex non-linear functions, while the linear region
provides stable, non-vanishing gradients when propagated
through very deep networks (Krizhevsky et al. 2012). Af-
ter every 2-3 convolutional layers, the representations are
spatially downsampled by only evaluating the convolutional
filters at every second position. Downsampling helps to ag-
gregate localized lower level information into higher seman-
tic levels with lower spatial resolution. We start with 16 fil-
ters in the first layer and double the number of filters after
each spatial downsampling, which is a common practice in
deep CNNs. We find that doubling or quadrupling the num-
ber of filters in every layer slightly improves the accuracy of
the network, however, we settle with 16 filters to avoid ad-
ditional runtime. When the spatial extent of convolutional
layers becomes very small (3 × 3) we average all activations
along spatial dimensions, creating a single one-dimensional
representation. Finally, a linear layer with 2 outputs predicts
the ellipticity components of the galaxy. The outline of the
neural network is detailed in [Tab. 1].

The inputs to the neural network are 48 × 48 pixel
postage stamp images with pixel values rescaled by the
means and r.m.s. values of the sky measured with SExtrac-
tor (Bertin & Arnouts 1996). When training with multi-
band images, different colors are stacked as different input
channels similarly to RGB images. We do not incorporate
pixel weights or masks into out inputs, however, we note
that it would be straightforward to simply stack these as
additional channels of the input image. During training,
we augment the dataset with random horizontal and ver-
tical flips and random transpositions to combat overfitting,
ground truth ellipticities of galaxies are transformed accord-
ingly during augmentation. The augmentation scheme cre-
ates an 8× larger dataset, however, the new examples are not
independent. The applied transformations enable the neu-
ral network to learn additional symmetries of the dataset
alongside translation invariance represented with convolu-
tional operations. An interesting branch of research efforts
attempt to create neural networks with built-in representa-
tion for rotational symmetries (Cohen & Welling 2016; Kon-
dor et al. 2018), however, these works have not completely
matured yet. During testing, we evaluate each galaxy and its
90 degrees rotated version, which reduces the errors by only
approximately 1 %. Evaluating a rotated version doubles
execution time and results in only a modest improvement
in accuracy, however, we prefer to apply this augmentation
because it potentially mitigates additive bias due to its sym-
metry. We do not predict on the other 6 flipped and trans-
posed versions of the image, because we find only very small
improvements from additional test time augmentation, and
it makes inference significantly slower.

We train the neural network with a minibatch size of 512
for 40 complete iterations on the training dataset, called an
epoch. The training dataset is reshuffled before each traver-
sal to create a varying composition of minibatches in each
iteration, which has a regularization effect when batch nor-
malizations are used (Ioffe & Szegedy 2015). We use stochas-
tic gradient descent optimisation with an initial learning rate

MNRAS 000, 1–14 (2019)
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Figure 3. The CNN estimates galaxy shapes with smaller dispersion than the DES im3shape catalogue. The heatmap shows joint
distributions of ’ground truth CFHTLenS shapes and estimates by the CNN (left) and the DES shape catalog (right) for the 40% of

galaxies which were selected for cosmology in the DES im3shape catalog.

of 0.005 and we decrease the learning rate tenfold after the
20th and the 30th epoch to enable convergence by the end
of the training schedule. During training, we minimise the
mean absolute error between predicted and target elliptici-
ties. We do not exhaustively optimize the training process of
the neural network by varying hyper-parameters, nor do we
attempt to find the optimal CNN architecture. We find that
our base setup is very fast and reasonably accurate, and we
delegate fine-tuning of the network details to later works.

Our CNN does not use the known PSF during training
or predictions. The effect of PSF anisotropy is very small
compared to the overall variance of shape estimation, and it
absolutely does not effect our results, when comparing the
shapes of individual galaxies, without ensembling for shear
estimation. Convolutional neural networks are flexible meth-
ods and they could be used to produce predictions with low
bias and small PSF leakage using special loss functions or
similar methods as in Tewes et al. (2019). However we leave
this topic to future work, and in this work we demonstrate
that PSF anisotropy and multiplicative bias can be handled
by nesting our CNN ellipticity estimator within the met-
calibration framework, which can be wrapped around any
sufficiently stable ellipticity estimator. We find that our re-
sults are indistinguishable for the two ellipticity components,
therefore our results are shown after concatenating the two
components into one ellipticity value. We make source code
for our approach publicly available on github 8.

3 SHAPE ESTIMATION USING SINGLE
BAND IMAGES

First, we train and evaluate the CNN shape estimator on
only r band stacked DES images, enabling fair compari-
son with the DES im3shape catalogue. im3shape is a for-

8 https://github.com/riblidezso/shearNN

ward fitting algorithm, where galaxies are modelled with a
bulge or a disc profile and profiles are convolved with the
PSF before being compared to measured images. The max-
imum likelihood solutions are found using the Levenberg-
Marquardt algorithm (Zuntz et al. 2013). For the DES Y1
im3shape catalogue, shape measurements were performed
on multi epoch r band images (Jarvis et al. 2016), and the
best fitting bulge or disc models were selected. A large num-
ber of galaxies were flagged unfit for cosmology mainly due
to their small size and low signal to noise ratio (Jarvis et al.
2016), resulting in unreliable shape estimates, which pro-
hibits accurate bias calibration. The clean sample only in-
cludes around 40% of galaxies detected both in DES and
CFHTLens. A large portion of these excluded galaxies are
selected for cosmology in the deeper metacalibration cat-
alogue. Heatmaps of true and estimated values show that
the predictions of the CNN show smaller dispersion than
the DES im3shape catalogue [Fig. 3] for the high-quality
sample selected for cosmology.

In order to understand the performance of the CNN
shape estimator under various circumstances, we first inves-
tigate the accuracy of shape estimates at different magni-
tudes. We group galaxies into 10 equal size bins, assign their
mean r magnitude to the bin and we calculate the Pearson
correlation of estimated and ground truth shapes in each
bin [Fig. ] 4]. Note, that for these tests we make predictions
with the same model, trained on the whole training set, and
we only divide galaxies into different bins for the evaluation.
We find that the DES catalogue is just as accurate as the
CNN for bright galaxies, and the CNN becomes significantly
more precise as noise begins to dominate images. For clar-
ity, we evaluate the above-mentioned figure for three sets,
the full catalogue, the subset selected for cosmology and the
one excluded. Reassuringly, we find that the subset selected
for cosmology is much more accurate than the excluded one,
and im3shape even outperforms the CNN on the brightest
galaxies, and only falls behind for much more abundant faint

MNRAS 000, 1–14 (2019)
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but the CNN is more accurate on much more common faint galaxies (center). On the subset excluded from cosmology, mainly due to
small size and low brightness (right), the CNN significantly outperforms the DES im3shape catalogue.
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dependence is only shown for galaxies where peak photometric redshift estimate is between 0.6 − 0.8.

galaxies. On the other hand, the CNN vastly outperforms
im3shape on the subset of small and faint galaxies which
were rightfully excluded from cosmology in the im3shape
catalogue.

We also evaluate performance depending on other mea-
sured physical properties of galaxies, such as size, redshift,
and color index, to see whether any of these can explain
the performance advantage of the CNN. For these tests, we
only use the subset selected for cosmology where im3shape
closely matches the performance of the CNN, and galaxies
are divided into 5 bins. In the third evaluation with color
index, we selected galaxies with peak photometric redshifts
between 0.6−0.8 according to CFHTLenS photo-z estimates
(Hildebrandt et al. 2012) to restrict our analysis to galaxy
colors resulting from different spectral types. At this red-
shift, the 4000A break lies on the border of r and i bands,
and galaxies clearly show red-blue bimodal distribution. We
selected uniform intervals for the color index bin edges in-

stead of equal size bins in order to sufficiently cover the less
populated mode of red galaxies. We find that the CNN is
more accurate than im3shape regardless of galaxy size, red-
shift or color index [Fig. 5], however, at large galaxy size,
the difference between the methods seems to diminish. The
results on distant, faint and small galaxies indicate that the
CNN shape estimator could increase the galaxy density of
the survey via allowing fewer galaxies to be excluded than
with the im3shape maximum likelihood estimator.

We manually inspected many galaxies where the CNN
is more accurate than im3shape in order to see whether the
accuracy difference can be explained by some unusual fea-
ture, such as blending or artefacts. We find no such distin-
guishing features, except for high noise level and the small
galaxy size discussed earlier. Finally, we show a few examples
of galaxies and estimated ellipticities. We selected two ex-
amples where the CNN estimated shapes significantly more
accurately than the DES catalog [Fig. 6], one where both
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Figure 6. Example galaxy shape measurements and r-band images from DES (top) and i-band images CFHTLenS (bottom) for 4
example galaxies. The ellipticity estimates are represented with lines at the bottom of the figures. The height of the grey band represents

an ellipticity of 0.8.

were correct, and one where both were wrong. The selected
galaxies have high redshifts and large noise and we only se-
lected galaxies where at least 5 different exposures are used
when fitting im3shape. The examples illustrate that galaxy
shape estimation is indeed a very hard task for noisy and
small examples.

4 SHAPE ESTIMATION USING MULTI-BAND
IMAGES

Shapes of galaxies are highly correlated in different colours,
therefore different band DES images can be combined to
achieve more accurate shape measurements of faint galax-
ies. The most useful colours are riz bands, which are used
in the metacalibration catalogue, therefore we also train
and evaluate the CNN on images where these 3 bands were
stacked in different input channels. All the other details of
the neural network and the training protocol is the same as
in the one band case. Note that additional input channels
have practically no effect of the runtime of the CNN, unlike
in the case of forward fitting methods, where there is a linear
relationship between the number of images in the joint fit
and the runtime of estimation. The first layer in the CNN,
which maps from the input channels to 16 filters, is practi-
cally negligible compared to the next layer which maps from
16 to 16 filters, regardless of the whether the number of in-
put channels is 1 or 3. With a much larger number of input
channels, the runtime can be dominated by the first layer,
and this will inevitably lead to additional computation time,
however, with only sub-linear scaling.

We compare the performance of the multi-band CNN
to the DES Y1 metacalibration shape catalogue, which
used the ’ngmix’ engine (Sheldon 2015) to fit a single Gaus-

sian galaxy brightness profile (Zuntz et al. 2018), after for-
ward convolution by the PSF which is also approximated
with a single Gaussian. The simple representation of both
galaxy and PSF profiles with a single Gaussian was reported
to be necessary for computational efficiency (Zuntz et al.
2018). Similarly to the im3shape catalogue, fits were per-
formed on many single epoch observations by maximizing
joint likelihood. The ellipticity of the galaxy profiles had a
prior strongly centred on zero, which was found to be nec-
essary for stable fits for faint objects. Note that im3shape
does not use such a strong prior on ellipticities which may re-
sult in unstable fits for faint galaxies. This prior results in a
strong multiplicative bias (≈ 0.3) in raw ellipticity estimates,
however, this is entirely corrected with the metacalibra-
tion procedure, which we discuss in detail in §6. Therefore,
we use the ensemble corrected shear estimates for the meta-
calibration catalogue. Note that due to the two additional
bands, the metacalibration catalogue is significantly more
accurate than the im3shape catalogue.

It is important to note that in the metacalibration
procedure, an extra noise field is added to the images before
shape measurement. This noise field has the same r.m.s. as
the noise on the original image, effectively reducing the S/N

of the image by
√

2. Therefore, in order to perform a fair
comparison of the CNN and the metacalibration cata-
logue we evaluate the CNN on images with an additional
noise field with unit variance, called “fixnoise”. Predictions
on raw images are also shown in order to illustrate the effect
of fixnoise. Note that we train the CNN on raw images, and
only add extra noise before predictions.

We repeat the same evaluations as in the case of single-
band measurements, using only the subset of galaxies se-
lected for cosmology in the DES Y1 metacalibration cat-
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Figure 7. The CNN estimates galaxy shapes with smaller dispersion than the DES metacalibration catalogue. The heatmap shows
joint distributions of ground truth CFHTLenS shapes and estimates by the CNN (left) and the DES shape catalogue (right) for galaxies

which were selected for cosmology in the DES metacalibration catalogue.
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Figure 8. The CNN estimates shapes of faint galaxies more accu-
rately than the DES Y1 metacalibration catalogue. The solid
line shows the precision of the CNN shape estimator evaluated

on images comparable to DES measurements, with additional ar-
tificial noise as in metacalibration. The dotted line represents

CNN shape estimates on original images, it is added to illustrate

the effect of additional noise. Only galaxies selected for cosmology
in the DES metacalibration catalogue are shown.

alogue. In the metacalibration catalogue the only signifi-
cant exclusion criteria is S/N > 10 in order to avoid implicit
selection effects from source detection. We find that the CNN
estimates shapes of galaxies with smaller dispersion than the
DES catalogue when using multi-band images [Fig. 7]. The
advantage of the CNN only appears at faint galaxies [Fig.
8] and it is independent of the size and the redshift of these
galaxies [Fig. 9].

Interestingly, we find that the advantage of the CNN is

increased on blue galaxies [Fig. 9], while it almost disappears
for red ones. Blue, star-forming galaxies can have complex,
irregular shapes and these are apparently much better char-
acterized by the CNN than a single Gaussian fit. On the
other hand, in the case of relaxed, red, elliptical galaxies a
Gaussian profile fits the images almost as well as the predic-
tions of the CNN. The CNN is not limited by design to use
a small set of simple surface brightness profiles, and our re-
sults indicate that it is able to learn a useful prior of possible
complex galaxy shapes, which gives it a significant advan-
tage over a single Gaussian profile for distant blue galaxies.

5 THE EFFECT OF THE SIZE OF THE
TRAINING DATASET

Our training dataset contains approximately 105 galaxies,
and we investigate the performance depending on the num-
ber of galaxies for training the CNN, by randomly excluding
galaxies from the training set. We maintain the same num-
ber of minibatch iterations regardless of training data size,
in order to allow convergence for small training data sizes.
For demonstration purposes, we also incorporate g and Y
bands into the input, therefore it is a 5 channel image. We
find that inclusion of the image bands only very slightly
improves performance. The precision of the CNN plateaus
around 4 × 104 galaxies [Fig. 10], with very little if any im-
provement for larger training set sizes. A peculiar flat region
appears between 2 × 103 − 104 galaxies, but this is probably
due to sub-optimal training schedule for some training set
sizes. The results indicate that a larger collection of galax-
ies, such as a simulated dataset, is not expected to signifi-
cantly improve the dispersion reached here. Future surveys
will easily collect the amount of data necessary to train a
CNN shape estimator to reach its full potential.
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6 METACALIBRATION FOR THE CNN

6.1 The metacalibration formalism

metacalibration is a recently developed innovative self-
calibration protocol for weak lensing shear measurements,
which calculates necessary corrections using the images
themselves instead of deriving them from a large suite of
simulated galaxies (Huff & Mandelbaum 2017; Sheldon &
Huff 2017). metacalibration was successfully implemented
to produce one of the shape catalogues of the DES Y1 data
release (Zuntz et al. 2018). Without weak lensing, we would
measure the unperturbed shape of the galaxy and percent
level cosmic shear only very slightly changes the measure-

ment. For small enough shears the observed shape can be
approximated with a linear relationship to shear.

ε = ε |g=0 +
∂ε

∂g

���
g=0

g +O(g2) (4)

, where ε is the two component shape estimate and g is
the cosmic shear. The partial derivative of shape measure-
ment with respect to shear is called response.

The core idea of metacalibration is that the response
can be approximated by artificially shearing and remeasur-
ing the image of the galaxy. Via measuring the shapes of
galaxies at different artificial shear values we can calculate
the finite derivative of shape measurement with respect to
shear. To correctly mimic the effect of cosmic shear, one
must first deconvolve the images with the PSF, apply the
known artificial shear and then reconvolve image with a cir-
cular synthetic PSF. It is practical to calculate a two-sided
derivative.

Ri, j =
εi(∆gj ) − εi(−∆gj )

2∆gj
(5)

The mean shape over a set of galaxies is the sum of
intrinsic shapes and shapes induced by shear.

〈ε〉 = 〈ε |g=0〉 + 〈Rg〉 +O(g2) (6)

The mean shape of galaxies in the absence of shear has
zero expectation value for a well-behaving shape estimator.
Assuming constant shear acting on galaxies, the metacal-
ibration shear estimator can be expressed with the mean
response and the mean shape over a set of galaxies.

〈g〉 ≈ 〈R〉−1〈ε〉 (7)

For ellipticity measurements, the response is a diagonal
matrix, and the formula reduces to an element-wise division.
Note that response is practically equivalent to multiplicative
bias, and therefore it is low for faint galaxies, resulting in the
implicit down-weighting of shear measured in these galaxies
by the shape estimation algorithm itself as 〈ε〉 = 〈Rg〉.
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6.2 fixnoise correction

In the presence of noise, simple metacalibration breaks
down. The artificial shear is intended to only shear the
galaxy, however, it also shears the deconvolved noise field,
therefore it fails to accurately mimic cosmic shear. The ad-
ditional sheared correlated noise field results in the under-
estimation of the response (Sheldon & Huff 2017). In the
presence of an asymmetric PSF, another problem also arises.
Apart from the light of the galaxy which was smeared by the
PSF originally, the white noise field of the image is also de-
convolved by the asymmetric PSF, introducing significant
PSF leakage.

An additional noise field, with the same dispersion,
but opposite shear statistically negates the undesired con-
tribution of the original noise field, this method is called
“fixnoise”. Practically the new noise field needs to undergo
the same operations as the images, rotated by 90 deg and
added to the manipulated galaxy image. The final counter-
factual image will be symmetric regarding the direction of
PSF asymmetry and artificial shear, therefore the shape
measurement will not have PSF leakage and the response
can be measured correctly.

Ĩ = Ĩgal + η̃(∆g, εPSF ) + η̃ f ix(−∆g,−εPSF ) (8)

, where Ĩ is the counterfactual image of the galaxy and η̃
is the distorted noise field. The accuracy of metacalibra-
tion with fixnoise correction has been thoroughly verified
in simulations by Sheldon & Huff (2017) and Zuntz et al.
(2018).

The shape of the galaxy must also be measured on de-
vonvolved and reconvolved images with additional fixnoise,
because we measure the response of this particular shape
estimator. The additional noise field reduces the signal to
noise ratio of the image by

√
2, reducing the precision of

measurements in exchange for principled shear calibration.

6.3 Simulated galaxies

In principle metacalibration does not need large simu-
lations which precisely match survey data to produce cali-
bration values, however, it is necessary to test the biases of
metacalibration with every new shape estimator, pipeline
or survey with a large amount of controlled simulation data
resembling the true dataset. We simulate 48 × 48 pixel size
postage stamp images of 3.5 × 108 bulge+disk composite
galaxies using the galsim python package (Rowe et al. 2015),
at a scale of 0.263” per pixel. The disk component has an
exponential profile and the bulge has a Sérsic profile with
n = 4. The fraction of flux in the disk component has a
uniform distribution between 0 and 1, and the total flux
of the galaxies has a truncated Gaussian distribution, the
mean flux was 150, the r.m.s. 125, and minimum flux was
100. We assign uncorrelated ellipticities to the disc and the
bulge with Gaussian distributions for the ε1,2 components
with an r.m.s. of 0.2 and 0.1 respectively. Each galaxy is
sheared with a uniform random g1,2 value between −0.04 to
0.04. The half light radii of galaxy surface profiles before
convolution with the PSF have a truncated Gaussian dis-
tribution, with mean 0.75, r.m.s. 0.25 and minimum 0.2 in
units of the half light radius of the PSF. We use a Gaussian
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Figure 11. Multiplicative and additive bias of the metacalibrated

CNN shear estimator. Measured from 350 million simulated galax-

ies.

PSF with FWHM = 0.9′′, because the convolutional neural
network was trained on stacked images with complex PSFs.
We assign a uniform random ellipticity to the psf with ε1,2
values between -0.025 to 0.025.

6.4 metacalibration results

We implement the metacalibration procedure using CNN
shape estimates building on the convolution and shear func-
tions of galsim. We use the CNN described previously,
trained only on single band DES images and adopt an ar-
tificial shear value ∆g = 0.001. The convolution operations
of metacalibration dominate the runtime, approximately
40 ms per galaxy, therefore we use full test-time augmenta-
tion by averaging predictions on all 8 flipped and transposed
combinations, as it was practically free. The mean response
of the CNN shape estimator on the simulation is around 0.7,
apparently smaller than in the observational data, showing
that the simulation is sufficiently challenging. Multiplicative
and additive biases are calculated by fitting a linear function
to the error of shear estimates depending on known shear si-
multaneously for 350 million galaxies. We find that biases of
the CNN estimator after metacalibration are the same in
the two components, therefore we merge them.

The final multiplicative bias is m = (0.24 ± 0.32) × 10−3,
well below the limit necessary for future large weak lensing
surveys. The result is very similar to the one obtained by
(Sheldon & Huff 2017) using their variable shear simulation.
The additive bias is also negligible, c = (1.2±0.9)×10−5. The
results are depicted with the fitted linear relationship and
20 aggregated points [Fig. 11].

In metacalibration, PSF asymmetries are handled
by PSF measurement and deconvolution instead of shape
measurement algorithms, and it was thoroughly tested on
DES Y1 data by Zuntz et al. (2018). They found that PSF
measurement errors dominate the potential error introduced
by deconvolution. We also characterise the PSF leakage of
shape measurement by fitting a linear function to shape es-
timate errors and PSF ellipticity. We find that PSF leakage
is an order of magnitude smaller than the effect of PSF mea-
surement errors in Zuntz et al. (2018) [Fig. 12].
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Mean response is larger for the diagonal ellipticity component.

Interestingly, the response of the CNN is different for
the two shape components, with a significantly larger re-
sponse for the second, diagonal component [Fig. 13]. The
difference is due to additional shearing operations and the
application of fixnoise, because multiplicative biases of the
two components are equal on raw simulated images. How-
ever, we find no such difference when estimating shapes of
these galaxies using adaptive moments (Bernstein & Jarvis
2002). Note that this peculiarity does not interfere with the
metacalibration procedure.

7 DISCUSSION

We present a novel setup to create a training and testing
dataset from only observational data using a wider but shal-
lower survey to obtain postage stamp images of galaxies, and
a narrow but deeper survey to measure the ’ground truth’
shapes of galaxies. Such a training and testing setup will
also be possible to construct for any ongoing or planned
weak lensing survey with dedicated deep fields such as Deep
Drilling Field for LSST, Euclid Deep Fields, The Subaru

Deep Field and WFIRST Deep Fields. Space telescope data
from Hubble and WJT could also be used to provide“ground
truth” shapes.

We propose convolutional neural networks for galaxy
shape estimation for weak lensing, and we show that a CNN
is able to perform a shape measurement in 0.2 milliseconds,
more than 10000× faster than a maximum likelihood forward
fitting method. Model fitting procedures are very resource
intensive, which already warrant simplifications in current
surveys (Fenech Conti et al. 2017; Zuntz et al. 2018), and it
will be a large challenge to tackle large scale, deep surveys in
the near future. CNNs offer a super-fast alternative, which
could significantly facilitate data analysis for very large weak
lensing surveys.

The CNN is able to match the precision of maximum
likelihood shape estimates for very bright galaxies and sig-
nificantly outperforms them on faint galaxies. On the small
and faint subset of a galaxies excluded from cosmology in the
DES im3shape catalogue, where the maximum likelihood
method struggles to provide reliable shape estimates which
can be calibrated, the CNN is able to measure the shapes
of this galaxies with much higher accuracy, potentially pre-
venting the exclusion of some these galaxies for increased
galaxy density. The CNN is able to measure galaxy shapes
using multi-band input images with no additional overhead
compared to the single band case. The precision of these
multi-image shape estimates match the DES Y1 metacali-
bration catalogue at bright galaxies, and it is significantly
higher at faint galaxies. The CNN is not limited by simple
surface brightness profiles, which enables it to significantly
outperform the single Gaussian fit of DES Y1 metacalibra-
tion on blue galaxies, while the difference is much smaller
on relaxed red galaxies.

Improved precision is worthless if systematics degrade,
and we demonstrate that the CNN shape estimator can be
nested in the metacalibration process, to yield shear es-
timates with a sufficiently small multiplicative bias for fu-
ture large weak lensing surveys m < 10−3 with no significant
PSF leakage. The CNN reaches peak performance around
4×105 galaxies, which can be easily collected in future large
surveys, and our result indicate that more data might not
improve precision much further.

For our proof of concept study we use the easily acces-
sible stacked images from DES DR1, however, weak lensing
surveys generally evaluate multi-epoch data with a joint fit
over single exposures (Miller et al. 2013; Zuntz et al. 2018)
as the interpolation of the PSF creates artefacts in stacked
images which are problematic for shear estimation (Miller
et al. 2013). A joint prediction using multiple exposures is
perfectly possible with CNNs too, as demonstrated by joint
prediction on multiple band images. The exploration of CNN
shape estimators in extreme cases such as ≈ 1000 exposures
per galaxy in LSST may provide further interesting results.

metacalibration reduces the signal to noise ratio of
galaxies and therefore hampers the precision of shear esti-
mates in exchange for robustly eliminating bias. Our current
implementation of metacalibration dominates runtime,
therefore in order to fully exploit the performance of CNNs
this limitation needs to be tackled, possibly with a GPU ac-
celerated metacalibration implementation. The results of
Tewes et al. (2019) indicate that a specifically tailored neu-
ral network could be able to produce shear estimates with
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small bias and no significant PSF leakage. Tewes et al. (2019)
provide properties of the galaxy and the PSF as inputs to
a densely connected neural network, and a CNN could also
have access to all the necessary information and it could also
be specifically trained to natively produce shear estimates
with small bias and PSF leakage. Such a shape estimator
could fully realise the potential of CNNs both in terms of
precision and speed.

Further tests with CNN shape estimators in simulations
could improve our understanding of factors which contribute
to the performance advantage of the CNN compared to a
maximum likelihood model fitting approach. The extraction
of meaningful and interpretable knowledge from the inspec-
tion of a CNN could also improve our understanding of the
problem itself (Ribli et al. 2019b). Finally, in our proposed
scheme, galaxy shape estimation with CNNs cannot com-
pletely replace model fitting approaches, as the training pro-
cedure relies on high-quality shape measurements from a
deeper survey which must be performed with conventional
methods.
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